ORGANIZED SUPERSTRUCTURES AT NANOSCALE AND NEW FUNCTIONAL NANOMATERIALS

2007 ◽  
Vol 06 (05) ◽  
pp. 373-377 ◽  
Author(s):  
V. KISLOV ◽  
B. MEDVEDEV ◽  
YU. GULYAEV ◽  
I. TARANOV ◽  
V. KASHIN ◽  
...  

We report on a number of new effects of self-organization at nanoscale, leading to creation of new functional nanomaterials, including carbon and carbon–metal nanotoroids and nanodiscs and self-assembling of magnetic nanoparticles into helices and chains. We also extensively used a new approach of biopattern nanoengineering to create DNA-based complexes with metal or CdSe / ZnS core-shell nanorods (22 × 4.5 nm) which possess strong linearly polarized photoluminescence due to unidirectional orientation of nanorods along DNA filaments. Optical, electrical, and topological (geometrical) properties of such complexes were investigated. This work is a result of a coherent effort (since 1980s) of a consortium of Russian research groups in Nano-technology (INTC: Interdisciplinary Nanotechnology Consortium) aimed at creating molecular electronic devices based on individual and collective properties of specially designed and fabricated nanoclusters.

2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 166 ◽  
Author(s):  
Lucia Lombardi ◽  
Annarita Falanga ◽  
Valentina Del Genio ◽  
Stefania Galdiero

Peptide drugs hold great promise for the treatment of infectious diseases thanks to their novel mechanisms of action, low toxicity, high specificity, and ease of synthesis and modification. Naturally developing self-assembly in nature has inspired remarkable interest in self-assembly of peptides to functional nanomaterials. As a matter of fact, their structural, mechanical, and functional advantages, plus their high bio-compatibility and bio-degradability make them excellent candidates for facilitating biomedical applications. This review focuses on the self-assembly of peptides for the fabrication of antibacterial nanomaterials holding great interest for substituting antibiotics, with emphasis on strategies to achieve nano-architectures of self-assembly. The antibacterial activities achieved by these nanomaterials are also described.


2012 ◽  
Vol 472-475 ◽  
pp. 3384-3389
Author(s):  
Zai Qiang Huo ◽  
Xue Qun Zhu

It is valuable to be researched in the application of science of complexity to the forest ecosystem. Forest ecosystem is an adaptive complex system which is suggested to be at the edge of chaos or at the criticality. The inner interaction of a forest ecosystem is the main driving force for the self-organization, complexity and order in the forest ecosystem. Forest ecosystem complexity is one of the research frontiers of ecological and evolutionary problems presently. The application of science of complexity to the forest ecosystem complexity studies, its concept, background, methodology and theory are briefly introduced. The forest ecosystem complexity is defined as the structure and function diversity, self-organization and the order of an ecosystem. Its main methods include the cellular automaton, genetic algorithm, game theory, complex network, etc. This paper has discussed mechanism and development of forest ecosystem complexity, by applying the principle and methods of science of complexity, which is a new approach for understanding ecological and evolutionary problems.


2018 ◽  
Vol 22 (11) ◽  
pp. 5967-5985 ◽  
Author(s):  
Cédric Rebolho ◽  
Vazken Andréassian ◽  
Nicolas Le Moine

Abstract. The production of spatially accurate representations of potential inundation is often limited by the lack of available data as well as model complexity. We present in this paper a new approach for rapid inundation mapping, MHYST, which is well adapted for data-scarce areas; it combines hydraulic geometry concepts for channels and DEM data for floodplains. Its originality lies in the fact that it does not work at the cross section scale but computes effective geometrical properties to describe the reach scale. Combining reach-scale geometrical properties with 1-D steady-state flow equations, MHYST computes a topographically coherent relation between the “height above nearest drainage” and streamflow. This relation can then be used on a past or future event to produce inundation maps. The MHYST approach is tested here on an extreme flood event that occurred in France in May–June 2016. The results indicate that it has a tendency to slightly underestimate inundation extents, although efficiency criteria values are clearly encouraging. The spatial distribution of model performance is discussed and it shows that the model can perform very well on most reaches, but has difficulties modelling the more complex, urbanised reaches. MHYST should not be seen as a rival to detailed inundation studies, but as a first approximation able to rapidly provide inundation maps in data-scarce areas.


2009 ◽  
Vol 152-153 ◽  
pp. 175-181
Author(s):  
Bronislav Kashevsky ◽  
Sergei Kashevsky ◽  
Igor Prokhorov

This paper presents computational and experimental studies of two phenomena occurring in magnetic suspensions under strongly non-equilibrium conditions created by high-frequency (in comparison with the inverse characteristic time of the particle mechanical motion) magnetic fields. First is the dynamic magnetic hysteresis in a dilute suspension of highly-coercive particles subjected to linearly polarized fields. Energy absorption by particles is of great interest for cancer treatment, chemical technology, biology and smart materials science. Second is related to polymer composite technologies and represents dissipative self-organization of a system of magnetically soft particles in a drying thin layer of polymer solution set under a rotating magnetic field


Circuit World ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ali Majeed ◽  
Esam Alkaldy

Purpose This study aims to replace current multi-layer and coplanar wire crossing methods in QCA technology to avoid fabrication difficulties caused by them. Design/methodology/approach Quantum-dot cellular automata (QCA) is one of the newly emerging nanoelectronics technology tools that is proposed as a good replacement for complementary metal oxide semiconductor (CMOS) technology. This technology has many challenges, among them being component interconnection and signal routing. This paper will propose a new wire crossing method to enhance layout use in a single layer. The presented method depends on the central cell clock phase to enable two signals to cross over without interference. QCADesigner software is used to simulate a full adder circuit designed with the proposed wire crossing method to be used as a benchmark for further analysis of the presented wire crossing approach. QCAPro software is used for power dissipation analysis of the proposed adder. Findings A new cost function is presented in this paper to draw attention to the fabrication difficulties of the technology when designing QCA circuits. This function is applied to the selected benchmark circuit, and the results show good performance of the proposed method compared to others. The improvement is around 59, 33 and 75% compared to the best reported multi-layer wire crossing, coplanar wire crossing and logical crossing, respectively. The power dissipation analysis shows that the proposed method does not cause any extra power consumption in the circuit. Originality/value In this paper, a new approach is developed to bypass the wire crossing problem in the QCA technique.


Ragnar Frisch, the Nobel prizer in economics, drew attention to two phenomena: propagation problems and impulse problems in dynamic economics. His deep scientific contribution relates to the interpretation of business cycle transformed under the influence of impulses (shocks). But some terminological misunderstandings arose. One of them forced the authors to focus on the phenomenon of systems' self-movement: their self-organization in statics and their self-development in dynamics. Another one relates to exogenous nature of impulses (shocks) that forced the authors to prove the endogenous embeddedness of shocks into the mechanisms of dialectical laws implementation. Eugen Slutsky demonstrated the stochastic approach as to random fluctuations as a source of cyclical processes in the economy. The confusion in the concepts of cycles and waves predetermines the need to create a wave theory of systemic self-organization (Chapter 2). Modern shocks theory develops a new approach which makes it possible to eliminate misconceptions of past theories.


2018 ◽  
Vol 7 (1.7) ◽  
pp. 10
Author(s):  
R H Aswathy ◽  
N Malarvizhi

The broad vision of IoT focuses the highly increasing the electronic devices and application in which leads to the growth of technology. The enormous amounts of constrained devices are interlinked, communicate and coordinate with each other to fulfill its tackier mainly concentrate on low energy, Resource constraint, self-organization and short range of communication. In this heterogeneous environment of Antiprivacy and security are the greatest challenge. The secure information exchange is most critical pitfall to ensure the system security. In this paper we discussed and analyzed about various security algorithms like Triple DES, AES, Blowfish and ECCwith their structure, block size, key generation, number of rounds with different settings. In order to analyze the efficiency of all said algorithms, we made an experiment on algorithms works on constrained devices in different contexts, all our experiments show that ECC is the most suitable security algorithm in IOT contexts.


10.12737/4989 ◽  
2014 ◽  
Vol 21 (2) ◽  
pp. 15-20 ◽  
Author(s):  
Гараева ◽  
G. Garaeva ◽  
Ватамова ◽  
S. Vatamova ◽  
Филатов ◽  
...  

Attempts to describe the behavioral dynamic model of the functional systems of the human body has traditionally been based on models of periodic and quasi-periodic processes (breathing, cardiac work, brain biopotentials, etc.). The paper assumes a new approach to the description of the voluntary or involuntary periodic or quasi-periodic motions and other dynamic processes (normal and pathological) in human body. It is shown that the norm is often chaotic behavioral dynamics of the state vector of the human body and the periodic or stationary modes of dynamics are typical of pathology, while in medicine for a long time the views were diametrically opposite. The paper presents the application of calculation method of quasi-attractors in estimation of biomechanical processes (sighting or Parkinson’s disease). The informational significance of the method is shown.


Sign in / Sign up

Export Citation Format

Share Document