PROVIDING TIMELY UPDATED SEQUENTIAL PATTERNS IN DECISION MAKING

2010 ◽  
Vol 09 (06) ◽  
pp. 873-888 ◽  
Author(s):  
TZUNG-PEI HONG ◽  
CHING-YAO WANG ◽  
CHUN-WEI LIN

Mining knowledge from large databases has become a critical task for organizations. Managers commonly use the obtained sequential patterns to make decisions. In the past, databases were usually assumed to be static. In real-world applications, however, transactions may be updated. In this paper, a maintenance algorithm for rapidly updating sequential patterns for real-time decision making is proposed. The proposed algorithm utilizes previously discovered large sequences in the maintenance process, thus greatly reducing the number of database rescans and improving performance. Experimental results verify the performance of the proposed approach. The proposed algorithm provides real-time knowledge that can be used for decision making.

2017 ◽  
Vol 14 (4) ◽  
pp. 172988141772078 ◽  
Author(s):  
Seda Kul ◽  
Süleyman Eken ◽  
Ahmet Sayar

Traffic surveillance cameras are widely used in traffic management and information systems. Processing streaming media in real time is resource and time-consuming processes and even impossible to realize in most real-world applications. To overcome the performance problems in such applications, this article introduces a middleware system based on pub/sub messaging protocol and a dispatcher to preprocess the streams in real time. Experimental results show that proposed middleware may be utilized in different areas such as infrastructure planning, traffic management, and prevention of traffic offenses.


Data ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Ahmed Elmogy ◽  
Hamada Rizk ◽  
Amany M. Sarhan

In data mining, outlier detection is a major challenge as it has an important role in many applications such as medical data, image processing, fraud detection, intrusion detection, and so forth. An extensive variety of clustering based approaches have been developed to detect outliers. However they are by nature time consuming which restrict their utilization with real-time applications. Furthermore, outlier detection requests are handled one at a time, which means that each request is initiated individually with a particular set of parameters. In this paper, the first clustering based outlier detection framework, (On the Fly Clustering Based Outlier Detection (OFCOD)) is presented. OFCOD enables analysts to effectively find out outliers on time with request even within huge datasets. The proposed framework has been tested and evaluated using two real world datasets with different features and applications; one with 699 records, and another with five millions records. The experimental results show that the performance of the proposed framework outperforms other existing approaches while considering several evaluation metrics.


2021 ◽  
Vol 15 (3) ◽  
pp. 1-33
Author(s):  
Wenjun Jiang ◽  
Jing Chen ◽  
Xiaofei Ding ◽  
Jie Wu ◽  
Jiawei He ◽  
...  

In online systems, including e-commerce platforms, many users resort to the reviews or comments generated by previous consumers for decision making, while their time is limited to deal with many reviews. Therefore, a review summary, which contains all important features in user-generated reviews, is expected. In this article, we study “how to generate a comprehensive review summary from a large number of user-generated reviews.” This can be implemented by text summarization, which mainly has two types of extractive and abstractive approaches. Both of these approaches can deal with both supervised and unsupervised scenarios, but the former may generate redundant and incoherent summaries, while the latter can avoid redundancy but usually can only deal with short sequences. Moreover, both approaches may neglect the sentiment information. To address the above issues, we propose comprehensive Review Summary Generation frameworks to deal with the supervised and unsupervised scenarios. We design two different preprocess models of re-ranking and selecting to identify the important sentences while keeping users’ sentiment in the original reviews. These sentences can be further used to generate review summaries with text summarization methods. Experimental results in seven real-world datasets (Idebate, Rotten Tomatoes Amazon, Yelp, and three unlabelled product review datasets in Amazon) demonstrate that our work performs well in review summary generation. Moreover, the re-ranking and selecting models show different characteristics.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 49
Author(s):  
Zain-Aldeen S. A. Rahman ◽  
Basil H. Jasim ◽  
Yasir I. A. Al-Yasir ◽  
Raed A. Abd-Alhameed ◽  
Bilal Naji Alhasnawi

In this paper, a new fractional order chaotic system without equilibrium is proposed, analytically and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigations were used to describe the system’s dynamical behaviors including the system equilibria, the chaotic attractors, the bifurcation diagrams, and the Lyapunov exponents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attractors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive control theory was developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state variables for the master and slave. Consequently, the update laws of the slave parameters are obtained, where the slave parameters are assumed to be uncertain and are estimated corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results were obtained by MATLAB and the Arduino Due boards, respectively, with a good consistency between the simulation results and the experimental results, indicating that the new fractional order chaotic system is capable of being employed in real-world applications.


2021 ◽  
pp. 026638212110619
Author(s):  
Sharon Richardson

During the past two decades, there have been a number of breakthroughs in the fields of data science and artificial intelligence, made possible by advanced machine learning algorithms trained through access to massive volumes of data. However, their adoption and use in real-world applications remains a challenge. This paper posits that a key limitation in making AI applicable has been a failure to modernise the theoretical frameworks needed to evaluate and adopt outcomes. Such a need was anticipated with the arrival of the digital computer in the 1950s but has remained unrealised. This paper reviews how the field of data science emerged and led to rapid breakthroughs in algorithms underpinning research into artificial intelligence. It then discusses the contextual framework now needed to advance the use of AI in real-world decisions that impact human lives and livelihoods.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yu-Lung Hsieh ◽  
Don-Lin Yang ◽  
Jungpin Wu

Many real world applications of association rule mining from large databases help users make better decisions. However, they do not work well in financial markets at this time. In addition to a high profit, an investor also looks for a low risk trading with a better rate of winning. The traditional approach of using minimum confidence and support thresholds needs to be changed. Based on an interday model of trading, we proposed effective profit-mining algorithms which provide investors with profit rules including information about profit, risk, and winning rate. Since profit-mining in the financial market is still in its infant stage, it is important to detail the inner working of mining algorithms and illustrate the best way to apply them. In this paper we go into details of our improved profit-mining algorithm and showcase effective applications with experiments using real world trading data. The results show that our approach is practical and effective with good performance for various datasets.


2014 ◽  
pp. 8-20
Author(s):  
Kurosh Madani

In a large number of real world dilemmas and related applications the modeling of complex behavior is the central point. Over the past decades, new approaches based on Artificial Neural Networks (ANN) have been proposed to solve problems related to optimization, modeling, decision making, classification, data mining or nonlinear functions (behavior) approximation. Inspired from biological nervous systems and brain structure, Artificial Neural Networks could be seen as information processing systems, which allow elaboration of many original techniques covering a large field of applications. Among their most appealing properties, one can quote their learning and generalization capabilities. The main goal of this paper is to present, through some of main ANN models and based techniques, their real application capability in real world industrial dilemmas. Several examples through industrial and real world applications have been presented and discussed.


2020 ◽  
Vol 68 ◽  
pp. 311-364
Author(s):  
Francesco Trovo ◽  
Stefano Paladino ◽  
Marcello Restelli ◽  
Nicola Gatti

Multi-Armed Bandit (MAB) techniques have been successfully applied to many classes of sequential decision problems in the past decades. However, non-stationary settings -- very common in real-world applications -- received little attention so far, and theoretical guarantees on the regret are known only for some frequentist algorithms. In this paper, we propose an algorithm, namely Sliding-Window Thompson Sampling (SW-TS), for nonstationary stochastic MAB settings. Our algorithm is based on Thompson Sampling and exploits a sliding-window approach to tackle, in a unified fashion, two different forms of non-stationarity studied separately so far: abruptly changing and smoothly changing. In the former, the reward distributions are constant during sequences of rounds, and their change may be arbitrary and happen at unknown rounds, while, in the latter, the reward distributions smoothly evolve over rounds according to unknown dynamics. Under mild assumptions, we provide regret upper bounds on the dynamic pseudo-regret of SW-TS for the abruptly changing environment, for the smoothly changing one, and for the setting in which both the non-stationarity forms are present. Furthermore, we empirically show that SW-TS dramatically outperforms state-of-the-art algorithms even when the forms of non-stationarity are taken separately, as previously studied in the literature.


2014 ◽  
Vol 10 (2) ◽  
pp. 18-38 ◽  
Author(s):  
Kung-Jiuan Yang ◽  
Tzung-Pei Hong ◽  
Yuh-Min Chen ◽  
Guo-Cheng Lan

Partial periodic patterns are commonly seen in real-world applications. The major problem of mining partial periodic patterns is the efficiency problem due to a huge set of partial periodic candidates. Although some efficient algorithms have been developed to tackle the problem, the performance of the algorithms significantly drops when the mining parameters are set low. In the past, the authors have adopted the projection-based approach to discover the partial periodic patterns from single-event time series. In this paper, the authors extend it to mine partial periodic patterns from a sequence of event sets which multiple events concurrently occur at the same time stamp. Besides, an efficient pruning and filtering strategy is also proposed to speed up the mining process. Finally, the experimental results on a synthetic dataset and real oil price dataset show the good performance of the proposed approach.


2007 ◽  
Vol 47 (1) ◽  
pp. 309 ◽  
Author(s):  
S.I. Mackie ◽  
S.H. Begg ◽  
C. Smith ◽  
M.B. Welsh

Business underperformance in the upstream oil and gas industry, and the failure of many decisions to return expected results, has led to a growing interest over the past few years in understanding the impacts of decisionmaking tools and processes and their relationship to decision outcomes. A primary observation is that different decision types require different decision-making approaches to achieve optimal outcomes.Optimal decision making relies on understanding the types of decisions being made and tailoring the type of decision with the appropriate tools and processes. Yet the industry lacks both a definition of decision types and any guidelines as to what tools and processes should be used for what decisions types. We argue that maximising the chances of a good outcome in real-world decisions requires the implementation of such tailoring.


Sign in / Sign up

Export Citation Format

Share Document