EXPLORING THE POTENTIAL ENERGY SURFACE OF THE CATALYZED ISOMERIZATION OF NITROSOMETHANE TO FORMALDOXIME

2007 ◽  
Vol 06 (01) ◽  
pp. 187-195 ◽  
Author(s):  
GUO-MING LIANG ◽  
YI REN ◽  
SAN-YAN CHU ◽  
NING-BEW WONG

The mechanism of the isomerization of nitrosomethane to formaldoxime catalyzed by neutral molecule ( H 2 O and HCOOH ) has been investigated at the level of B3LYP/6-311+G**. Calculated results indicate that the rearrangement from nitrosomethane to more stable trans-formaldoxime can proceed via two different reaction channels, but the favorable reaction pathway catalyzed by water and formic acid is different from the one in the catalyst-free reaction. It is more favorable that the tautomeric reaction involves the formation of cis-formaldoxime and a subsequent rotation about the N – O bond to form trans-formaldoxime in the catalyzed reaction. The activation energy of rate-determining step was reduced from 197.9 kJ/mol to 138.7 kJ/mol in the water-catalyzed reaction and 79.6 kJ/mol in the formic acid-catalyzed reaction, respectively, due to the catalysis of hydroxylic groups, but the catalysis of more acidic hydroxyl group in the latter system has been shown to be more efficient.

2016 ◽  
Vol 69 (9) ◽  
pp. 943 ◽  
Author(s):  
Wenchao Wan ◽  
Li-Juan Yu ◽  
Amir Karton

Levoglucosenone (LGO) is an important anhydrosugar product of fast pyrolysis of cellulose and biomass. We use the high-level G4(MP2) thermochemical protocol to study the reaction mechanism for the formation of LGO from the 1,4:3,6-dianhydro-α-d-glucopyranose (DGP) pyrolysis intermediate. We find that the DGP-to-LGO conversion proceeds via a multistep reaction mechanism, which involves ring-opening, ring-closing, enol-to-keto tautomerization, hydration, and dehydration reactions. The rate-determining step for the uncatalyzed process is the enol-to-keto tautomerization (ΔG‡298 = 68.6 kcal mol–1). We find that a water molecule can catalyze five of the seven steps in the reaction pathway. In the water-catalyzed process, the barrier for the enol-to-keto tautomerization is reduced by as much as 15.1 kcal mol–1, and the hydration step becomes the rate-determining step with an activation energy of ΔG‡298 = 58.1 kcal mol–1.


1997 ◽  
Vol 75 (11) ◽  
pp. 1465-1471 ◽  
Author(s):  
B.N. Grgur ◽  
N.M. Marković ◽  
P.N. Ross

Using the rotating ring-disk technique (RRDPt(hkl)E), the oxygen-reduction reaction (ORR) was studied in sulfuric acid solution over the temperature range 298–333 K At the same temperature, the exchange current density increased in the order, [Formula: see text] which gives the order of absolute kinetic activities of Pt(hkl) in 0.05 mol/L H2SO4: Pt(111) < Pt(100) < Pt(110). We found that at high current densities every crystal face has an ideally temperature-dependent Tafel slope, i.e., −2 × 2.3(RT/F). The activation energy for the ORR is independent of the surface geometry, [Formula: see text]. The insensitivity of the activation energy to surface structure implies that the reaction pathway for the ORR is the same on all three single-crystal faces. A "series" pathway for the ORR was proposed, with the first electron transfer being the rate-determining step. The structure sensitivity in the kinetics of the ORR on Pt(hkl) is attributed to the structure-sensitive adsorption of bisulfate and hydroxyl anions and a simple site-blocking effect of these adsorbed anions on the rate of the ORR. Keywords: platinum single crystals, oxygen reduction, peroxide reduction, temperature effects, activation energy.


2019 ◽  
Author(s):  
Raghu Nath Dhital ◽  
keigo nomura ◽  
Yoshinori Sato ◽  
Setsiri Haesuwannakij ◽  
Masahiro Ehara ◽  
...  

Carbon-Fluorine (C-F) bonds are considered the most inert organic functionality and their selective transformation under mild conditions remains challenging. Herein, we report a highly active Pt-Pd nanoalloy as a robust catalyst for the transformation of C-F bonds into C-H bonds at low temperature, a reaction that often required harsh conditions. The alloying of Pt with Pd is crucial to activate C-F bond. The reaction profile kinetics revealed that the major source of hydrogen in the defluorinated product is the alcoholic proton of 2-propanol, and the rate-determining step is the reduction of the metal upon transfer of the <i>beta</i>-H from 2-propanol. DFT calculations elucidated that the key step is the selective oxidative addition of the O-H bond of 2-propanol to a Pd center prior to C-F bond activation at a Pt site, which crucially reduces the activation energy of the C-F bond. Therefore, both Pt and Pd work independently but synergistically to promote the overall reaction


2018 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Younes Ghalandarzehi ◽  
Mehdi Shahraki ◽  
Sayyed M. Habibi-Khorassani

Aim & Scope: The synthesis of highly substituted piperidine from the one-pot reaction between aromatic aldehydes, anilines and β-ketoesters in the presence of tartaric acid as a catalyst has been investigated in both methanol and ethanol media at ambient temperature. Different conditions of temperature and solvent were employed for calculating the thermodynamic parameters and obtaining an experimental approach to the kinetics and mechanism. Experiments were carried out under different temperature and solvent conditions. Material and Methods: Products were characterized by comparison of physical data with authentic samples and spectroscopic data (IR and NMR). Rate constants are presented as an average of several kinetic runs (at least 6-10) and are reproducible within ± 3%. The overall rate of reaction is followed by monitoring the absorbance changes of the products versus time on a Varian (Model Cary Bio- 300) UV-vis spectrophotometer with a 10 mm light-path cell. Results: The best result was achieved in the presence of 0.075 g (0.1 M) of catalyst and 5 mL methanol at ambient temperature. When the reaction was carried out under solvent-free conditions, the product was obtained in a moderate yield (25%). Methanol was optimized as a desirable solvent in the synthesis of piperidine, nevertheless, ethanol in a kinetic investigation had none effect on the enhancement of the reaction rate than methanol. Based on the spectral data, the overall order of the reaction followed the second order kinetics. The results showed that the first step of the reaction mechanism is a rate determining step. Conclusion: The use of tartaric acid has many advantages such as mild reaction conditions, simple and readily available precursors and inexpensive catalyst. The proposed mechanism was confirmed by experimental results and a steady state approximation.


2021 ◽  
pp. 000370282199121
Author(s):  
Yuki Nakaya ◽  
Satoru Nakashima ◽  
Takahiro Otsuka

The generation of carbon dioxide (CO2) from Nordic fulvic acid (FA) solution in the presence of goethite (α-FeOOH) was observed in FA–goethite interaction experiments at 25–80 ℃. CO2 generation processes observed by gas cell infrared (IR) spectroscopy indicated two steps: the zeroth order slower CO2 generation from FA solution commonly occurring in the heating experiments of the FA in the presence and absence of goethite (activation energy: 16–19 kJ mol–1), and the first order faster CO2 generation from FA solution with goethite (activation energy: 14 kJ mol–1). This CO2 generation from FA is possibly related to redox reactions between FA and goethite. In situ attenuated total reflection infrared (ATR-IR) spectroscopic measurements indicated rapid increases with time in IR bands due to COOH and COO– of FA on the goethite surface. These are considered to be due to adsorption of FA on the goethite surface possibly driven by electrostatic attraction between the positively charged goethite surface and negatively charged deprotonated carboxylates (COO–) in FA. Changes in concentration of the FA adsorbed on the goethite surface were well reproduced by the second order reaction model giving an activation energy around 13 kJ mol–1. This process was faster than the CO2 generation and was not its rate-determining step. The CO2 generation from FA solution with goethite is faster than the experimental thermal decoloration of stable structures of Nordic FA in our previous report possibly due to partial degradations of redox-sensitive labile structures in FA.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2248
Author(s):  
Lukáš Petera ◽  
Klaudia Mrazikova ◽  
Lukas Nejdl ◽  
Kristyna Zemankova ◽  
Marketa Vaculovicova ◽  
...  

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


2006 ◽  
Vol 8 (23) ◽  
pp. 2779 ◽  
Author(s):  
Wei Chen ◽  
Jaemin Kim ◽  
Shouheng Sun ◽  
Shaowei Chen

1971 ◽  
Vol 49 (14) ◽  
pp. 2455-2459 ◽  
Author(s):  
Y. Y. Lim ◽  
A. R. Stein

The acid-catalyzed hydrolysis of methyl isonitrile has been examined. The initial hydrolysis product is N-methylformamide which is further hydrolyzed to methyl amine and formic acid at a much slower rate. The hydrolysis to N-methylformamide is pseudo-first order in methyl isonitrile and shows a linear rate dependence on concentration of general (buffer) acid at fixed pH. The significance of general acid-catalysis in terms of the mechanism of the hydrolysis is considered and taken as evidence for carbon protonation rather than nitrogen protonation as the initiating step.


Sign in / Sign up

Export Citation Format

Share Document