scholarly journals Is the average shortest path length of gene set a reflection of their biological relatedness?

2016 ◽  
Vol 14 (06) ◽  
pp. 1660002 ◽  
Author(s):  
Varsha Embar ◽  
Adam Handen ◽  
Madhavi K. Ganapathiraju

When a set of genes are identified to be related to a disease, say through gene expression analysis, it is common to examine the average distance among their protein products in the human interactome as a measure of biological relatedness of these genes. The reasoning for this is that, genes associated with a disease would tend to be functionally related, and that functionally related genes would be closely connected to each other in the interactome. Typically, average shortest path length (ASPL) of disease genes (although referred to as genes in the context of disease-associations, the interactions are among protein-products of these genes) is compared to ASPL of randomly selected genes or to ASPL in a randomly permuted network. We examined whether the ASPL of a set of genes is indeed a good measure of biological relatedness or whether it is simply a characteristic of the degree distribution of those genes. We examined the ASPL of genes sets of some disease and pathway associations and compared them to ASPL of three types of randomly selected control sets: uniform selection, from entire proteome, degree-matched selection, and random permutation of the network. We found that disease associated genes and their degree-matched random genes have comparable ASPL. In other words, ASPL is a characteristic of the degree of the genes and the network topology, and not that of functional coherence.

Genes ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1713
Author(s):  
Manuela Petti ◽  
Lorenzo Farina ◽  
Federico Francone ◽  
Stefano Lucidi ◽  
Amalia Macali ◽  
...  

Disease gene prediction is to date one of the main computational challenges of precision medicine. It is still uncertain if disease genes have unique functional properties that distinguish them from other non-disease genes or, from a network perspective, if they are located randomly in the interactome or show specific patterns in the network topology. In this study, we propose a new method for disease gene prediction based on the use of biological knowledge-bases (gene-disease associations, genes functional annotations, etc.) and interactome network topology. The proposed algorithm called MOSES is based on the definition of two somewhat opposing sets of genes both disease-specific from different perspectives: warm seeds (i.e., disease genes obtained from databases) and cold seeds (genes far from the disease genes on the interactome and not involved in their biological functions). The application of MOSES to a set of 40 diseases showed that the suggested putative disease genes are significantly enriched in their reference disease. Reassuringly, known and predicted disease genes together, tend to form a connected network module on the human interactome, mitigating the scattered distribution of disease genes which is probably due to both the paucity of disease-gene associations and the incompleteness of the interactome.


2021 ◽  
Author(s):  
Sarah M Alghamdi ◽  
Paul N Schofield ◽  
Robert Hoehndorf

Computing phenotypic similarity has been shown to be useful in identification of new disease genes and for rare disease diagnostic support. Genotype--phenotype data from orthologous genes in model organisms can compensate for lack of human data to greatly increase genome coverage. Work over the past decade has demonstrated the power of cross-species phenotype comparisons, and several cross-species phenotype ontologies have been developed for this purpose. The relative contribution of different model organisms to identifying disease-associated genes using computational approaches is not yet fully explored. We use methods based on phenotype ontologies to semantically relate phenotypes resulting from loss-of-function mutations in different model organisms to disease-associated phenotypes in humans. Semantic machine learning methods are used to measure how much different model organisms contribute to the identification of known human gene--disease associations. We find that only mouse phenotypes can accurately predict human gene--disease associations. Our work has implications for the future development of integrated phenotype ontologies, as well as for the use of model organism phenotypes in human genetic variant interpretation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Douglas Guilbeault ◽  
Damon Centola

AbstractThe standard measure of distance in social networks – average shortest path length – assumes a model of “simple” contagion, in which people only need exposure to influence from one peer to adopt the contagion. However, many social phenomena are “complex” contagions, for which people need exposure to multiple peers before they adopt. Here, we show that the classical measure of path length fails to define network connectedness and node centrality for complex contagions. Centrality measures and seeding strategies based on the classical definition of path length frequently misidentify the network features that are most effective for spreading complex contagions. To address these issues, we derive measures of complex path length and complex centrality, which significantly improve the capacity to identify the network structures and central individuals best suited for spreading complex contagions. We validate our theory using empirical data on the spread of a microfinance program in 43 rural Indian villages.


2010 ◽  
Vol 26 (9) ◽  
pp. 1219-1224 ◽  
Author(s):  
Yongjin Li ◽  
Jagdish C. Patra

Abstract Motivation: Clinical diseases are characterized by distinct phenotypes. To identify disease genes is to elucidate the gene–phenotype relationships. Mutations in functionally related genes may result in similar phenotypes. It is reasonable to predict disease-causing genes by integrating phenotypic data and genomic data. Some genetic diseases are genetically or phenotypically similar. They may share the common pathogenetic mechanisms. Identifying the relationship between diseases will facilitate better understanding of the pathogenetic mechanism of diseases. Results: In this article, we constructed a heterogeneous network by connecting the gene network and phenotype network using the phenotype–gene relationship information from the OMIM database. We extended the random walk with restart algorithm to the heterogeneous network. The algorithm prioritizes the genes and phenotypes simultaneously. We use leave-one-out cross-validation to evaluate the ability of finding the gene–phenotype relationship. Results showed improved performance than previous works. We also used the algorithm to disclose hidden disease associations that cannot be found by gene network or phenotype network alone. We identified 18 hidden disease associations, most of which were supported by literature evidence. Availability: The MATLAB code of the program is available at http://www3.ntu.edu.sg/home/aspatra/research/Yongjin_BI2010.zip Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Paola Paci ◽  
Giulia Fiscon ◽  
Federica Conte ◽  
Rui-Sheng Wang ◽  
Lorenzo Farina ◽  
...  

AbstractIn this study, we integrate the outcomes of co-expression network analysis with the human interactome network to predict novel putative disease genes and modules. We first apply the SWItch Miner (SWIM) methodology, which predicts important (switch) genes within the co-expression network that regulate disease state transitions, then map them to the human protein–protein interaction network (PPI, or interactome) to predict novel disease–disease relationships (i.e., a SWIM-informed diseasome). Although the relevance of switch genes to an observed phenotype has been recently assessed, their performance at the system or network level constitutes a new, potentially fascinating territory yet to be explored. Quantifying the interplay between switch genes and human diseases in the interactome network, we found that switch genes associated with specific disorders are closer to each other than to other nodes in the network, and tend to form localized connected subnetworks. These subnetworks overlap between similar diseases and are situated in different neighborhoods for pathologically distinct phenotypes, consistent with the well-known topological proximity property of disease genes. These findings allow us to demonstrate how SWIM-based correlation network analysis can serve as a useful tool for efficient screening of potentially new disease gene associations. When integrated with an interactome-based network analysis, it not only identifies novel candidate disease genes, but also may offer testable hypotheses by which to elucidate the molecular underpinnings of human disease and reveal commonalities between seemingly unrelated diseases.


2020 ◽  
Vol 9 (2) ◽  
pp. 132-161 ◽  
Author(s):  
Ranjan Kumar ◽  
Sripati Jha ◽  
Ramayan Singh

The authors present a new algorithm for solving the shortest path problem (SPP) in a mixed fuzzy environment. With this algorithm, the authors can solve the problems with different sets of fuzzy numbers e.g., normal, trapezoidal, triangular, and LR-flat fuzzy membership functions. Moreover, the authors can solve the fuzzy shortest path problem (FSPP) with two different membership functions such as normal and a fuzzy membership function under real-life situations. The transformation of the fuzzy linear programming (FLP) model into a crisp linear programming model by using a score function is also investigated. Furthermore, the shortcomings of some existing methods are discussed and compared with the algorithm. The objective of the proposed method is to find the fuzzy shortest path (FSP) for the given network; however, this is also capable of predicting the fuzzy shortest path length (FSPL) and crisp shortest path length (CSPL). Finally, some numerical experiments are given to show the effectiveness and robustness of the new model. Numerical results show that this method is superior to the existing methods.


2014 ◽  
Vol 4 (4) ◽  
pp. 36-54 ◽  
Author(s):  
António Leitão ◽  
Adriano Vinhas ◽  
Penousal Machado ◽  
Francisco Câmara Pereira

Inverse Combinatorial Optimization has become a relevant research subject over the past decades. In graph theory, the Inverse Shortest Path Length problem becomes relevant when people don't have access to the real cost of the arcs and want to infer their value so that the system has a specific outcome, such as one or more shortest paths between nodes. Several approaches have been proposed to tackle this problem, relying on different methods, and several applications have been suggested. This study explores an innovative evolutionary approach relying on a genetic algorithm. Two scenarios and corresponding representations are presented and experiments are conducted to test how they react to different graph characteristics and parameters. Their behaviour and differences are thoroughly discussed. The outcome supports that evolutionary algorithms may be a viable venue to tackle Inverse Shortest Path problems.


Sign in / Sign up

Export Citation Format

Share Document