PROBABILISTIC ANALYSIS OF BEARING CAPACITY OF SHALLOW FOUNDATIONS USING THREE-DIMENSIONAL LIMIT ANALYSES

2014 ◽  
Vol 11 (02) ◽  
pp. 1342008 ◽  
Author(s):  
JOÃO T. SIMÕES ◽  
LUÍS C. NEVES ◽  
ARMANDO N. ANTÃO ◽  
NUNO M. C. GUERRA

Strip shallow foundations on random heterogeneous soil responding in undrained conditions are analyzed using three-dimensional upper limit analysis and Latin Hypercube sampling. The results obtained considering the three-dimensional variability of soil are compared with results using plane models, showing significant differences in terms of both mean and standard deviation of bearing capacity. An averaged two-dimensional model fitted to a small set of three-dimensional samples is shown to yield accurate predictions of the bearing capacity distribution.

2019 ◽  
Vol 56 (5) ◽  
pp. 746-752 ◽  
Author(s):  
Run Liu ◽  
Meng-meng Liu ◽  
Ying-hui Tian ◽  
Xinli Wu

As a type of shallow foundation, a mudmat serves as the seabed support structure for subsea wells, pipeline manifolds, and pipeline terminations. The shallow foundations are usually designed with perforations to facilitate installation and removal, but the influence of these perforations has not been fully understood. This paper presents a method to analyze the bearing capacities of both two-dimensional (2D) and three-dimensional (3D) perforated shallow foundations using finite element analysis. The soil was idealized as a Tresca material, with the undrained strength increasing linearly with depth. The outcome indicates that perforations have nonnegligible effects on the bearing capacity of shallow foundations. The bearing capacity decreases with increasing perforation ratio, R, and the degree of reduction increases with the increase of the dimensionless ratio kB/Suo, where k is the shear strength gradient, B is the width of the foundation, and Suo is the shear strength at the mudline. For 2D shallow foundations, there exists a critical perforation ratio, Rc; when the perforation ratio is lower than the critical perforation ratio, the perforated foundation does not lose its bearing capacity. For 3D shallow foundations, the bearing capacity decreases directly with the increase of perforation ratio, R.


2021 ◽  
pp. 205141582110002
Author(s):  
Lorenz Berger ◽  
Aziz Gulamhusein ◽  
Eoin Hyde ◽  
Matt Gibb ◽  
Teele Kuusk ◽  
...  

Objective: Surgical planning for robotic-assisted partial nephrectomy is widely performed using two-dimensional computed tomography images. It is unclear to what extent two-dimensional images fully simulate surgical anatomy and case complexity. To overcome these limitations, software has been developed to reconstruct three-dimensional models from computed tomography data. We present the results of a feasibility study, to explore the role and practicality of virtual three-dimensional modelling (by Innersight Labs) in the context of surgical utility for preoperative and intraoperative use, as well as improving patient involvement. Methods: A prospective study was conducted on patients undergoing robotic-assisted partial nephrectomy at our high volume kidney cancer centre. Approval from a research ethics committee was obtained. Patient demographics and tumour characteristics were collected. Surgical outcome measures were recorded. The value of the three-dimensional model to the surgeon and patient was assessed using a survey. The prospective cohort was compared against a retrospective cohort and cases were individually matched using RENAL (radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, location relative to polar lines) scores. Results: This study included 22 patients. Three-dimensional modelling was found to be safe for this prospective cohort and resulted in good surgical outcome measures. The mean (standard deviation) console time was 158.6 (35) min and warm ischaemia time was 17.3 (6.3) min. The median (interquartile range) estimated blood loss was 125 (50–237.5) ml. Two procedures were converted to radical nephrectomy due to the risk of positive margins during resection. The median (interquartile range) length of stay was 2 (2–3) days. No postoperative complications were noted and all patients had negative surgical margins. Patients reported improved understanding of their procedure using the three-dimensional model. Conclusion: This study shows the potential benefit of three-dimensional modelling technology with positive uptake from surgeons and patients. Benefits are improved perception of vascular anatomy and resection approach, and procedure understanding by patients. A randomised controlled trial is needed to evaluate the technology further. Level of evidence: 2b


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2013 ◽  
Vol 66 (4) ◽  
pp. 431-438
Author(s):  
Augusto Ottoni Bueno da Silva ◽  
Newton de Oliveira Pinto Júnior ◽  
João Alberto Venegas Requena

The aim of this study was to evaluate through analytical calculation, two-dimensional elastic modeling, and three-dimensional plastic modeling, the bearing capacity and failure modes of composite hollow trusses bi-supported with a 15 meter span, varying the number of central Vierendeel panels. The study found the proportion span/3 - span/3 - span/3, as the ideal relationship for the truss - Vierendeel - truss lengths, because by increasing the proportion of the length occupied by the central Vierendeel panels, the new system loses stiffness and no longer supports the load stipulated in the project. Furthermore, they can start presenting excessive vertical displacements and insufficient resistance to external shear forces acting on the panels.


2008 ◽  
Vol 62 (1) ◽  
Author(s):  
Peter C. Chu

The Navy’s mine impact burial prediction model creates a time history of a cylindrical or a noncylindrical mine as it falls through air, water, and sediment. The output of the model is the predicted mine trajectory in air and water columns, burial depth/orientation in sediment, as well as height, area, and volume protruding. Model inputs consist of parameters of environment, mine characteristics, and initial release. This paper reviews near three decades’ effort on model development from one to three dimensions: (1) one-dimensional models predict the vertical position of the mine’s center of mass (COM) with the assumption of constant falling angle, (2) two-dimensional models predict the COM position in the (x,z) plane and the rotation around the y-axis, and (3) three-dimensional models predict the COM position in the (x,y,z) space and the rotation around the x-, y-, and z-axes. These models are verified using the data collected from mine impact burial experiments. The one-dimensional model only solves one momentum equation (in the z-direction). It cannot predict the mine trajectory and burial depth well. The two-dimensional model restricts the mine motion in the (x,z) plane (which requires motionless for the environmental fluids) and uses incorrect drag coefficients and inaccurate sediment dynamics. The prediction errors are large in the mine trajectory and burial depth prediction (six to ten times larger than the observed depth in sand bottom of the Monterey Bay). The three-dimensional model predicts the trajectory and burial depth relatively well for cylindrical, near-cylindrical mines, and operational mines such as Manta and Rockan mines.


2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110381
Author(s):  
Xue Bai ◽  
Ze Liu ◽  
Jie Zhang ◽  
Shengye Wang ◽  
Qing Hou ◽  
...  

Fully convolutional networks were developed for predicting optimal dose distributions for patients with left-sided breast cancer and compared the prediction accuracy between two-dimensional and three-dimensional networks. Sixty cases treated with volumetric modulated arc radiotherapy were analyzed. Among them, 50 cases were randomly chosen to conform the training set, and the remaining 10 were to construct the test set. Two U-Net fully convolutional networks predicted the dose distributions, with two-dimensional and three-dimensional convolution kernels, respectively. Computed tomography images, delineated regions of interest, or their combination were considered as input data. The accuracy of predicted results was evaluated against the clinical dose. Most types of input data retrieved a similar dose to the ground truth for organs at risk ( p > 0.05). Overall, the two-dimensional model had higher performance than the three-dimensional model ( p < 0.05). Moreover, the two-dimensional region of interest input provided the best prediction results regarding the planning target volume mean percentage difference (2.40 ± 0.18%), heart mean percentage difference (4.28 ± 2.02%), and the gamma index at 80% of the prescription dose are with tolerances of 3 mm and 3% (0.85 ± 0.03), whereas the two-dimensional combined input provided the best prediction regarding ipsilateral lung mean percentage difference (4.16 ± 1.48%), lung mean percentage difference (2.41 ± 0.95%), spinal cord mean percentage difference (0.67 ± 0.40%), and 80% Dice similarity coefficient (0.94 ± 0.01). Statistically, the two-dimensional combined inputs achieved higher prediction accuracy regarding 80% Dice similarity coefficient than the two-dimensional region of interest input (0.94 ± 0.01 vs 0.92 ± 0.01, p < 0.05). The two-dimensional data model retrieves higher performance than its three-dimensional counterpart for dose prediction, especially when using region of interest and combined inputs.


2013 ◽  
Vol 727 ◽  
pp. 236-255 ◽  
Author(s):  
D. Vigolo ◽  
I. M. Griffiths ◽  
S. Radl ◽  
H. A. Stone

AbstractUnderstanding the behaviour of particles entrained in a fluid flow upon changes in flow direction is crucial in problems where particle inertia is important, such as the erosion process in pipe bends. We present results on the impact of particles in a T-shaped channel in the laminar–turbulent transitional regime. The impacting event for a given system is described in terms of the Reynolds number and the particle Stokes number. Experimental results for the impact are compared with the trajectories predicted by theoretical particle-tracing models for a range of configurations to determine the role of the viscous boundary layer in retarding the particles and reducing the rate of collision with the substrate. In particular, a two-dimensional model based on a stagnation-point flow is used together with three-dimensional numerical simulations. We show how the simple two-dimensional model provides a tractable way of understanding the general collision behaviour, while more advanced three-dimensional simulations can be helpful in understanding the details of the flow.


Sign in / Sign up

Export Citation Format

Share Document