Tsallis holographic dark energy with hybrid expansion law

2020 ◽  
Vol 17 (11) ◽  
pp. 2050144 ◽  
Author(s):  
Vandna Srivastava ◽  
Umesh Kumar Sharma

In this work, we explore the Tsallis holographic dark energy (THDE) model with IR cutoff as Granda–Oliveros horizon describing the Universe experiencing an accelerating expansion phase in the framework of flat Friedmann–Lemaître–Robertson–Walker (FLRW) Universe. The Universe evolution from earlier decelerated to the current accelerated phase is exhibited by the deceleration parameter acquired in the THDE model. By the value of the Tsallis parameter [Formula: see text], the equation of state (EoS) parameter for the THDE model represents the rich behavior of the Cosmos as, the quintessence era ([Formula: see text]), crossing the phantom divide line and phantom era ([Formula: see text]). The squared sound speed [Formula: see text] also suggests that the THDE model is classically stable at present. Also, the correspondence with the quintessence and phantom scalar field for the THDE model is analyzed to describe the accelerated expansion of the Universe.

2013 ◽  
Vol 28 (27) ◽  
pp. 1350118 ◽  
Author(s):  
M. SHARIF ◽  
SHAMAILA RANI

We study the bulk viscosity taking dust matter in the generalized teleparallel gravity. We consider different dark energy (DE) models in this scenario along with a time-dependent viscous model to construct the viscous equation of state (EoS) parameter for these DE models. We discuss the graphical representation of this parameter to investigate the viscosity effects on the accelerating expansion of the universe. It is mentioned here that the behavior of the universe depends upon the viscous coefficients showing the transition from decelerating to accelerating phase. It leads to the crossing of phantom divide line and becomes phantom dominated for specific ranges of these coefficients.


2018 ◽  
Vol 15 (04) ◽  
pp. 1850067 ◽  
Author(s):  
Shamaila Rani ◽  
Abdul Jawad

We consider the recently proposed higher derivative torsion corrected modified teleparallel gravity and holographic dark energy (HDE) models. We apply the correspondence scheme to construct models in underlying scenario using various scale factor forms. We investigate the reconstructed functions through equation of state (EoS) parameter. It is demonstrated that the EoS parameter provides quintom-like nature of the Universe in most of the cases, i.e. it drives the Universe from vacuum dark energy era toward phantom era of the Universe by crossing the phantom divide line. We also demonstrate that the consistency with the observational data can be achieved.


Author(s):  
Anirudh Pradhan ◽  
Archana Dixit ◽  
Vinod Kumar Bhardwaj

We have analyzed the Barrow holographic dark energy (BHDE) in the framework of flat FLRW universe by considering the various estimations of Barrow exponent △. Here, we define BHDE, by applying the usual holographic principle at a cosmological system, for utilizing the Barrow entropy rather than the standard Bekenstein–Hawking. To understand the recent accelerated expansion of the universe, consider the Hubble horizon as the IR cutoff. The cosmological parameters, especially the density parameter [Formula: see text], the equation of the state parameter [Formula: see text], energy density [Formula: see text] and the deceleration parameter [Formula: see text] are studied in this paper and found the satisfactory behaviors. Moreover we additionally focus on the two geometric diagnostics, the statefinder [Formula: see text] and [Formula: see text] to discriminant BHDE model from the [Formula: see text]CDM model. Here we determined and plotted the trajectories of evolution for statefinder [Formula: see text], [Formula: see text] and [Formula: see text] diagnostic plane to understand the geometrical behavior of the BHDE model by utilizing Planck 2018 observational information. Finally, we have explored the new Barrow exponent △, which strongly affects the dark energy equation of state that can lead it to lie in the quintessence regime, phantom regime and exhibits the phantom-divide line during the cosmological evolution.


2020 ◽  
Vol 17 (01) ◽  
pp. 2050011 ◽  
Author(s):  
Vipin Chandra Dubey ◽  
Ambuj Kumar Mishra ◽  
Shikha Srivastava ◽  
Umesh Kumar Sharma

In this work, we have examined the behavior of Bianchi-I (axially symmetric) matter-dominated and the anisotropic Universe with the proposed dark energy, Tsallis holographic dark energy (THDE), with the Hubble horizon as infrared cut-off [Tavayef et al., Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195–200]. The Universe evolution from matter-dominated epoch to dark energy dominated epoch is described by our proposed THDE model. The EoS parameter in our THDE model explains the evolution of the Universe according to the value of nonextensive or Tsallis parameter [Formula: see text], phantom era ([Formula: see text]) or quintom (phantom line crossing) and the quintessence era ([Formula: see text]), before reaching to completely dark energy-dominated era in the future. Additionally, we also plan to reconcile the dark energy by the method of reconstructing the evolution of the scalar field potential. For the analysis, we take into account the quintessence field and phantom scalar field for this reconstruction, which at present shows the accelerated expansion.


Author(s):  
Mihai Marciu

Within this work, a new dark energy model it is proposed, by taking into account a non-minimally mixed kinetic geometric coupling between the two fields which construct a quintom model. By considering numerical analysis of the corresponding field equations, the evolution of the Universe in the present model has been analyzed, taking into account different viable potentials. For exponential potentials, the model presents an accelerated expansion, and the dark energy equation of state exhibit the phantom divide line crossing. However, for a steeper potential, in the case of a mixed potential, it is observed that the Universe can manifest Big Crunch singularities in the distant future, and the moment for which the singularity occur is sensitive to the value of the mixed coupling strength embedded into the η coeffcient. The results show that an increase of the $\eta$ parameter determine a delay in the the Big Crunch time in the distant future. In the present context, the choice of the potential function play a fundamental role in the evolution of the dynamical system, leading to very distinct cosmological scenarios.


Author(s):  
Umesh Kumar Sharma

In the present work, we construct the Tsallis holographic quintessence model of dark energy in [Formula: see text] gravity with Hubble horizon as infrared (IR) cut-off. In a flat Friedmann–Robertson–Walker (FRW) background, the correspondence among the energy density of the quintessence model with the Tsallis holographic density permits the reconstruction of the dynamics and the potentials for the quintessence field. The suggested Hubble horizon IR cut-off for the Tsallis holographic dark energy (THDE) density acts for two specific cases: (i) THDE 1 and (ii) THDE 2. We have reconstructed the Tsallis holographic quintessence model in the region [Formula: see text] for the equation of state (EoS) parameter for both the cases. we investigate the behavior of several well-known statefinder quantities, like the deceleration parameter, the jerk and the parameter [Formula: see text]. In addition, the quintessence phase of the THDE models is analyzed with swampland conjecture to describe the accelerated expansion of the Universe.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


Author(s):  
T. Vinutha ◽  
V.U.M. Rao ◽  
Molla Mengesha

The present study deals with a spatially homogeneous locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model containing one dimensional cosmic string fluid source. The Einstein's field equations are solved by using a relation between the metric potentials and hybrid expansion law of average scale factor. We discuss accelerated expansion of our model through equation of state (ωde) and deceleration parameter (q). We observe that in the evolution of our model, the equation of state parameter starts from matter dominated phase ωde > -1/3 and ultimately attains a constant value in quintessence region (-1 < ωde < -1/3). The EoS parameter of the model never crosses the phantom divide line (ωde = 1). These facts are consistent with recent observations. We also discuss some other physical parameters.


2016 ◽  
Vol 26 (06) ◽  
pp. 1750049 ◽  
Author(s):  
Abdul Jawad ◽  
Shamaila Rani ◽  
Ines G. Salako ◽  
Faiza Gulshan

We discuss the cosmological implications of interacting pilgrim dark energy (PDE) models (with Hubble, Granda–Oliveros and generalized ghost cutoffs) with cold dark matter ([Formula: see text]CDM) in fractal cosmology by assuming the flat universe. We observe that the Hubble parameter lies within observational suggested ranges while deceleration parameter represents the accelerated expansion behavior of the universe. The equation of state (EoS) parameter ([Formula: see text]) corresponds to the quintessence region and phantom region for different cases of [Formula: see text]. Further, we can see that [Formula: see text]–[Formula: see text] (where prime indicates the derivative with respect to natural logarithmic of scale factor) plane describes the freezing and thawing regions and also corresponds to [Formula: see text] limit for some cases of [Formula: see text] (PDE parameter). It is also noted that the [Formula: see text]–[Formula: see text] (state-finder parameters) plane corresponds to [Formula: see text] limit and also shows the Chaplygin as well as phantom/quintessence behavior. It is observed that pilgrim dark energy models in fractal cosmology expressed the consistent behavior with recent observational schemes.


2009 ◽  
Vol 24 (22) ◽  
pp. 1785-1792 ◽  
Author(s):  
B. NAYAK ◽  
L. P. SINGH

The present-day accelerated expansion of the universe is naturally addressed within the Brans–Dicke theory just by using holographic dark energy model with inverse of Hubble scale as IR cutoff and power law temporal behavior of scale factor. It is also concluded that if the universe continues to expand, then one day it might be completely filled with dark energy.


Sign in / Sign up

Export Citation Format

Share Document