Realizing metalloporphyrin functionalization of 4-vinylpyridine copolymer via axial coordination reaction

2010 ◽  
Vol 14 (03) ◽  
pp. 235-243 ◽  
Author(s):  
Baojiao Gao ◽  
Ruixin Wang ◽  
Ruikui Du

Cobalt tetra(para-chlorophenyl)porphyrin ( CoTCPP ) and zinc tetraphenyl porphyrin ( ZnTPP ) were linked on the side chains of the copolymer of 4-vinylpyridine (4VP) and styrene (St), P(4VP-co-St), via axial coordination reactions, respectively, and the metalloporphyrin-functionalized macromolecules, CoTCPP -P(4VP-co-St) and ZnTPP -P(4VP-co-St), were prepared. Their chemical structures were characterized by FTIR and 1H NMR. The spectral properties of the two macromolecular axial coordination complexes were mainly studied, and their photophysical behavior were discussed in depth. The experimental results show that the metalloporphyrin-functionalized macromolecules, CoTCPP -P(4VP-co-St) and ZnTPP -P(4VP-co-St), can be prepared favorably through axial coordination reaction with the side pyridine groups of the copolymer P(4VP-co-St) as ligands. The two complexes have characteristic spectra similar to that of the small molecular metalloporphyrins, CoTCPP and ZnTPP , respectively. At the same time, they also display the characteristic spectroscopic property of axial coordination complexes: the electronic adsorption spectra of CoTCPP -P(4VP-co-St) and ZnTPP -P(4VP-co-St) red-shifted obviously as compared to that of CoTCPP and ZnTPP , and the fluorescence emission of ZnTPP -P(4VP-co-St) blue-shifted apparently with respect to that of ZnTPP . For CoTCPP -P(4VP-co-St) and ZnTPP -P(4VP-co-St), some polymer effects were found: (1) the bonding degree of the small molecular metalloporphyrin, CoTCPP or ZnTPP , on the side chains of the copolymer P(4VP-co-St) has a limit value because of the steric hindrance and there is a bonding degree difference between the actual value and the theoretical value; (2) for ZnTPP -P(4VP-co-St), slight energy transfer between adjacent ZnTPP units on an identical macromolecule occurs, leading to slight static quench of the fluorescence emission as the bonding density of ZnTPP units on the side chains of the copolymer P(4VP-co-St) reaches a certain value.

2013 ◽  
Vol 575-576 ◽  
pp. 123-129
Author(s):  
Zhuang Dong Yuan ◽  
Jing Xia Wang ◽  
Ning Sheng

DABCO (1, 4-diazabicyclo [2.2.2] octane) has been used in combination with pentameric zinc porphyrin-pyrene array 1 to form well-defined supramolecular arrays through axial coordination. The self-assembly process has been investigated by a wide range of spectroscopic methods including UV-vis, fluorescence emission and 1H NMR techniques.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 316-326
Author(s):  
Bing Wang ◽  
Minxian Shi ◽  
Jie Ding ◽  
Zhixiong Huang

Abstract In this work, octamercapto polyhedral oligomeric silsesquioxane (POSS-8SH) and octaphenol polyhedral oligomeric silsesquioxane (POSS-8Phenol) were successfully synthetized. POSS-8Phenol was added into the synthesis process of liquid thermoset phenolic resin (PR) to obtain POSS-modified phenolic resin (POSS-PR). Chemical structures of POSS-8SH, POSS-8Phenol, and POSS-PR were confirmed by FTIR and 1H-NMR. TG and DTG analysis under different atmosphere showed that char yield of POSS-PR at 1,000°C increased from 58.6% to 65.2% in N2, which in air increased from 2.3% to 26.9% at 700°C. The maximum pyrolysis temperature in air increased from 543°C to 680°C, which meant better anti-oxidation properties. XRD results confirmed both POSS-8Phenol and POSS-PR-generated crystalline SiO2 in air, which could explain the improvement of anti-oxidation properties. SEM showed that the POSS-PR had phase separation during curing process. Finally, carbon fiber fabric-reinforced POSS-PR (C-POSS-PR) was prepared to verify the anti-oxidation properties of POSS-PR.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
S. Nagashree ◽  
P. Mallu ◽  
L. Mallesha ◽  
S. Bindya

A series of methyl-2-aminopyridine-4-carboxylate derivatives,3a–f,were synthesized in order to determine theirin vitroantimicrobial activity. The chemical structures of the synthesized compounds were confirmed by elemental analyses, FT-IR, and1H NMR spectral studies. Among the synthesized compounds,3cand3dshowed good antimicrobial activity compared to other compounds in the series.


2020 ◽  
Author(s):  
Lifang Guo ◽  
Benshan Xu ◽  
Zirui Wan ◽  
Lulu Ren ◽  
Jie Zhang ◽  
...  

Abstract Background: A series of aryl-piperazine derivatives of 1,7,8,9-tetrachloro-10,10-dimethoxy-4-azatricyclo [5.2.1.0 2,6 ] dec-8-ene-3,5-dione were synthesized. The chemical structures of the desired compounds were identified by 1 H NMR, ESI-MS and elementary analytical. The anti-cancer and anti-angiogenesis activities of the newly synthesized compounds were evaluated by proliferation and migration assays, respectively. Results: The screening results demonstrated that compounds 2 and 5 showed potent anti-tumor activity (IC 50 values ranging from 7.1 to 15.9μM) with low cytotoxic activities (IC 50 > 79.3μM). Although compound 5 showed little effects on endothelia proliferation (IC 50 =65.3μM), it indeed significantly abrogated endothelia cell migration (IC 50 =6.7μM). Conclusions: This work may impart new direction for the investigations of aryl-piperazine derivatives and lead to the development of potent novel anti-tumor and anti-angiogenesis agents.


2011 ◽  
Vol 66 (7-8) ◽  
pp. 345-352 ◽  
Author(s):  
Rahul V. Patel ◽  
Premlata Kumari ◽  
Kishor H. Chikhalia

A series of 1,3,5-triazine derivatives that contain 4-amino-2-trifl uoromethyl-benzonitrile, 8-hydroxyquinoline, and different piperazines as substituents at the carbon atoms of the triazine ring have been synthesized by a simple and efficient synthetic protocol. The chemical structures of the compounds were elucidated with the aid of IR, 1H NMR and 13C NMR spectroscopy, and elemental analysis. The antimicrobial activity of the compounds was tested against seven bacteria (Staphylococcus aureus MTCC 96, Bacillus cereus MTCC 619, Escherichia coli MTCC 739, Pseudomonas aeruginosa MTCC 741, Klebsiella pneumoniae MTCC 109, Salmonella typhi MTCC 733, Proteus vulgaris MTCC 1771) and four fungi (Aspergillus niger MTCC 282, Aspergillus fumigatus MTCC 343, Aspergillus clavatus MTCC 1323, Candida albicans MTCC 183). The results indicate that some of the novel s-triazines have noteworthy activity in minimum inhibitory concentration as well as agar diffusion tests.


1999 ◽  
Vol 15 (02) ◽  
pp. 167-172
Author(s):  
Feng Hai-Xia ◽  
◽  
Zhu Zhi-Ang ◽  
Wang Chuan-Zhong ◽  
Ruan Wen-Juan ◽  
...  

1995 ◽  
Vol 50 (8) ◽  
pp. 1222-1228 ◽  
Author(s):  
Hidenari Inoue ◽  
Hiromi Akahori ◽  
Yuri Ohno ◽  
Katsuo Nakazawa ◽  
Yoshimune Nonomura ◽  
...  

The adduct formation of iron(III) chlorophyll a with phosphines or phosphites has been studied by spectroscopic methods. The red-shift in the Soret and Q bands caused by the axial coordination of phosphine or phosphite to iron(III) chlorophyll a is an evidence for the autoreduction of the central iron(III) ion. The 31P{1H} NMR spectrum of bis-adducts measured in the presence of excess phosphine or phosphite ligands gave a single peak in the down field range compared to that of the corresponding free ligand. The ESR and X-ray photoelectron spectra have revealed that the central iron atom of the bis-adduct of iron chlorophyll a with phosphines or phosphites is divalent and in the low-spin state. The axial coordination of phosphine or phosphite influences the electronic configuration of the central iron atom and the macrocyclic chlorine ligand to induce the autoreduction of the central iron(III) ion.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Dingjun Zhang ◽  
Wenjin Zhao ◽  
Zhaoxuan Feng ◽  
Youzhi Wu ◽  
Caixia Huo ◽  
...  

AbstractIn this study, the salicylaldehyde hydrazone was bonded onto the side chains of poly (styrene-co-butyl acrylate), firstly obtaining a series of novel Schiff base-functionalized polymers. and using the base-containing polymers as macromolecular ligands through further reaction with EuCl3/YbCl3·6H2O, a series of polymer-rare earth complexes based on Eu(III)/Yb(III) ion were successfully prepared. The structures of the schiff base-containing polymers and their corresponding complexes were characterized by means of infrared spectra and UV spectra. The thermal properties of the functionalized polymers and complexes were investigated by TGA, and the fluorescence properties of the complexes were also researched by fluorescence spectrum. The experimental results show that the complexes have fine thermal stability likely because of the bidentate chelate effect of base-containing polymer and the conjugative effect of salicylaldehyde hydrazone group on the side chain of poly (styrene-co-butyl acrylate). More important, the salicylaldehyde hydrazone group on the side chains of poly(styrene-co-butyl acrylate) can efficaciously sensitize the fluorescence emission of the center ion due to effective intramolecular energy transfer. All the Eu(III)/Yb(III) complexes exhibit characteristic photoluminescence peaks in the visible region. The fluorescence excitation spectra of the complexes were obtained by monitoring the emission of Eu3+/Yb3+ ion at 497 nm, and the peak at 433 nm was found to be the optimal excitation peak. The concentration of salicylaldehyde hydrazone group was changed gradually with the variation of the molar ratio between the butyl acrylate and styrene (1:0.5; 1:1; 1:1.5; 1:2; 1:2.5), and the differences in their fluorescent intensity were followed, and the fluorescence intensity was very weak when the molar ratio of the butyl acrylate to styrene is equal to 1:2.5, while the fluorescence intensity reached a maximum value in the molar ratio of 1:1.


2016 ◽  
Vol 2016 ◽  
pp. 1-6 ◽  
Author(s):  
Hohyoun Jang ◽  
Jaeseong Ha ◽  
Jiho Yoo ◽  
Jaeseung Pyo ◽  
Kunyoung Choi ◽  
...  

The purpose of this study was to enhance the scratch resistance of polycarbonate copolymer by using 3,3′-dibenzoyl-4,4′-dihydroxybiphenyl (DBHP) monomer, containing benzoyl moieties on the ortho positions. DBHP monomer was synthesized from 4,4′-dihydroxybiphenyl and benzoyl chloride, followed by the Friedel-Craft rearrangement reaction with AlCl3. The polymerizations were conducted following the low-temperature procedure, which is carried out in methylene chloride by using triphosgene, triethylamine, bisphenol-A, and DBHP. The chemical structures of the polycarbonate copolymers were confirmed by1H-NMR. The thermal properties of copolymers were investigated by thermogravimetric analysis and differential scanning calorimetry, and also surface morphologies were assessed by atomic force microscopy. The scratch resistance of homopolymer film (100 μm) changed from 6B to 1B, and the contact angle of a sessile water drop onto the homopolymer film also increased.


2005 ◽  
Vol 13 (8) ◽  
pp. 777-794 ◽  
Author(s):  
Meng-Shun Huang ◽  
Ming-Chien Yang ◽  
Shen Chou

Polyamide-imide (PAI) and polyurea-amide-imide (PUAI) resins were polymerized from five reactants: 4,4'-oxydianiline, 4-nitrobenzoyl chloride, 4,4'-diphenylmethane diisocyanate, 1,2,4,5-benzenetetracarboxylic dianhydride, and 3,3'-4,4'-benzophenone tetracarboxylic dianhydride. Their chemical structures were characterized using elemental analysis, FTIR and 1H NMR spectroscopy. Their thermal properties, adhesive properties, electrical properties, heat resistance, and chemical resistance were studied. The experimental results show that the glass transition temperatures of PAI and PUAI films occurred respectively at 360 °C and 229 °C, and the 10% weight loss occurred respectively at approximately 481 °C and 420 °C. The optimal hot-press conditions for PAI/copper foil (CU) composite were 380°C and 4.90 MPa, whereas those for PUAI/copper foil (CU) composites were 250 °C and 4.90 MPa. Values of the peel strength, dielectric constant, and dissipation factor were obtained and the peel strength was re-measured after a thermal stability test. The chemical resistance tests showed that the peel strength retention values of the PAI/CU and PUAI/CU composites were respectively more than 95% and more than 94% after immersing in 10% H2SO4 solution at 70 °C for 1 h.


Sign in / Sign up

Export Citation Format

Share Document