Second order nonlinear optical properties of corroles: experimental and theoretical investigations

2012 ◽  
Vol 16 (12) ◽  
pp. 1276-1284 ◽  
Author(s):  
Xiao Ying ◽  
Xiao-Yan Long ◽  
Mian HR Mahmood ◽  
Quan-Yuan Hu ◽  
Hai-Yang Liu ◽  
...  

The first hyperpolarizabilities, βHRS, of corrole derivatives have been measured by using Hyper–Rayleigh Scattering technique. The results showed that βHRS of corroles could be greatly enhanced by modifying its periphery with donor–acceptor groups. Maximum value reaches 354 × 10-30 esu at an incident wavelength of 1500 nm. βHRS of investigated corroles were also calculated with the Zerner's intermediate neglect of differential overlap/configuration interaction/sum-over-states method. The calculated and experimental results are in good agreement and conclude that βHRS arises mainly from the charge transfer along molecule's non-symmetrical axis and strong coupling between two different excited states of the Soret band.

BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7079-7099
Author(s):  
Jianying Chen ◽  
Guojing He ◽  
Xiaodong (Alice) Wang ◽  
Jiejun Wang ◽  
Jin Yi ◽  
...  

Timber-concrete composite beams are a new type of structural element that is environmentally friendly. The structural efficiency of this kind of beam highly depends on the stiffness of the interlayer connection. The structural efficiency of the composite was evaluated by experimental and theoretical investigations performed on the relative horizontal slip and vertical uplift along the interlayer between composite’s timber and concrete slab. Differential equations were established based on a theoretical analysis of combination effects of interlayer slip and vertical uplift, by using deformation theory of elastics. Subsequently, the differential equations were solved and the magnitude of uplift force at the interlayer was obtained. It was concluded that the theoretical calculations were in good agreement with the results of experimentation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tao Wang ◽  
Zhubin Hu ◽  
Xiancheng Nie ◽  
Linkun Huang ◽  
Miao Hui ◽  
...  

AbstractAggregation-induced emission (AIE) has proven to be a viable strategy to achieve highly efficient room temperature phosphorescence (RTP) in bulk by restricting molecular motions. Here, we show that by utilizing triphenylamine (TPA) as an electronic donor that connects to an acceptor via an sp3 linker, six TPA-based AIE-active RTP luminophores were obtained. Distinct dual phosphorescence bands emitting from largely localized donor and acceptor triplet emitting states could be recorded at lowered temperatures; at room temperature, only a merged RTP band is present. Theoretical investigations reveal that the two temperature-dependent phosphorescence bands both originate from local/global minima from the lowest triplet excited state (T1). The reported molecular construct serves as an intermediary case between a fully conjugated donor-acceptor system and a donor/acceptor binary mix, which may provide important clues on the design and control of high-freedom molecular systems with complex excited-state dynamics.


Polymer ◽  
1986 ◽  
Vol 27 (11) ◽  
pp. 1705-1708 ◽  
Author(s):  
Qui Tran-Cong ◽  
Taihyun Chang ◽  
Charles C. Han ◽  
Yasunori Nishijima

2011 ◽  
Vol 90-93 ◽  
pp. 1264-1271
Author(s):  
Xiao Feng Li ◽  
Jun Yi Du

The ground structure, elastic and electronic properties of several phases of NbN are determined based on ab initio total-energy calculations within the framework of density functional theory. Among the five crystallographic structures that have been investigated, the hexagonal phases have been found to be more stable than the cubic ones. The calculated equilibrium structural parameters are in good agreement with the available experimental results. The elastic constants of five structures in NbN are calculated, which are in consistent with the obtained theoretical and experimental data. The corresponding Debye temperature and elastic ansitropies are also obtained. The Debye temperature of NbN in various structures consistent with available experimental and theoretical data, in which the Debye temperature of δ-NbN is highest. The anisotropies of ZB-NbN, NaCl-NbN, CsCl-NbN gradually increases. For hexagonal structure, the anisotropies of ε-NbN are stronger than that of δ-NbN. The electronic structures of NbN under pressure are investigated. It is found that NbN have metallization and the hybridizations of atoms in NbN under pressure become stronger.


1975 ◽  
Vol 97 (8) ◽  
pp. 2167-2178 ◽  
Author(s):  
Edward M. Kosower ◽  
Hanna Dodiuk ◽  
Kazutake Tanizawa ◽  
Michael Ottolenghi ◽  
Naomi Orbach

1973 ◽  
Vol 28 (10) ◽  
pp. 1635-1641 ◽  
Author(s):  
A. G. de Pinho ◽  
M. Weksler

The X-ray spectra resulting from the internal conversion of electric quadrupole transitions following the alpha decay of Th230 and Ra226 were analysed with a Si (Li) spectrometer. From the knowledge of the Coster-Kronig and fluorescence yields, the internal conversion coefficients of the E2 transitions from the first excited states in Ra226 and Rn222 could be deduced. Results are in good agreement with theoretical values.


2016 ◽  
Vol 4 (4) ◽  
pp. 597-607 ◽  
Author(s):  
Roberto S. Nobuyasu ◽  
Zhongjie Ren ◽  
Gareth C. Griffiths ◽  
Andrei S. Batsanov ◽  
Przemyslaw Data ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ioan Stroia ◽  
Ionuţ -Tudor Moraru ◽  
Maria Miclăuş ◽  
Ion Grosu ◽  
Claudia Lar ◽  
...  

In the context of helical chirality, bridging of biphenyl units leads to banister-type compounds and the stability of the resulted atropisomers may increase dramatically if suitable changes are performed in the linker unit that coils around the biphenyl moiety. A rigorous density functional theory (DFT) study was conducted for macrocycles containing rigid oxime ether segments connected to the biphenyl backbone in order to determine how the rotation barriers are influenced by the presence of either a flexible oligoethyleneoxide or a more rigid m–xylylene component in the macrocycle. The calculated values for the racemization barrier were in good agreement with those obtained experimentally and confirm the benefit of introducing a more rigid unit in the macrocycle on the stability of atropisomers. Solid-state data were obtained and computed data were used to assess the contribution brought by supramolecular associations observed in the lattice to the stabilization of the crystal structure. Beside introducing rigidity in the linker, complexation of flexible macrocycles with alkali metal ions is also contributing to the stability of atropisomers, leading to values for the racemization barrier matching that of the rigid macrocycle. Using diethylammonium cation as guest for the macrocycle, a spectacular increase in the barrier to rotation was observed for the resulted pseudo[2]rotaxane.


Sign in / Sign up

Export Citation Format

Share Document