10,15-Bis(ethoxycarbonyl)-5-(4-methoxycarbonylphenyl) B(III)subchlorin: A photosensitizer with high singlet oxygen producing efficiency

Author(s):  
Ishfaq A. Bhat ◽  
Rahul Soman ◽  
Brijesh Chandra ◽  
Sameeta Sahoo ◽  
Vikranth Thaltiri ◽  
...  

A novel A2B-type B(III)subchlorin has been synthesized for the first time in two ways possessing two different ester moieties upon macrocyclic periphery from meso-diethoxycarbonyl tripyrrane. Its photophysical and electrochemical properties have been explored. Introduction of the third meso-substituent resulted in the synthesis of the B(III)subchlorin as the major product with the formation of minor oxidized B(III)subporphyrin analogue. This subchlorin derivative was found to generate singlet oxygen much efficiently with quantum yield ([Formula: see text] 0.88.

2016 ◽  
Vol 40 (11) ◽  
pp. 9774-9780 ◽  
Author(s):  
Michal Kryjewski ◽  
Tomasz Rebis ◽  
Grzegorz Milczarek ◽  
Zofia Gdaniec ◽  
Tomasz Goslinski ◽  
...  

Phthalocyanine with moderate fluorescence and singlet oxygen quantum yield was obtained and its electrochemical properties were assessed.


2019 ◽  
Vol 23 (01n02) ◽  
pp. 34-45 ◽  
Author(s):  
Rodah C. Soy ◽  
Balaji Babu ◽  
David O. Oluwole ◽  
Njemuwa Nwaji ◽  
James Oyim ◽  
...  

Novel chloroindium(III) complexes of tetra(4-methylthiophenyl)porphyrin (2a) and tetra-2-thienylporphyrin (2b) dyes have been synthesized and characterized. The main goal of the project was to identify fully symmetric porphyrin dyes with Q-band regions that lie partially in the therapeutic window that are suitable for use in photodynamic therapy (PDT). 2a and 2b were found to have fluorescence quantum yield values [Formula: see text] 0.01 and moderately high singlet oxygen quantum yields (0.54−0.73) due to heavy atom effects associated with the sulfur and indium atoms. The dark toxicity and PDT activity against epithelial breast cancer cells (MCF-7) were investigated over a dose range of 3.0−40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. The in vitro dark cytotoxicity of 2a is significantly lower than that of 2b at [Formula: see text] 40 [Formula: see text]g [Formula: see text] mL[Formula: see text]. 2a was conjugated with gold nanoparticles (AuNPs) to form a nanoconjugate (2a-AuNPs), which exhibited a higher singlet oxygen quantum yield ([Formula: see text] value and PDT activity than was observed for 2a alone. The results suggest that the AuNPs nanoconjugates of readily synthesized fully symmetric porphyrin dyes are potentially suitable for PDT applications, if meso-aryl substituents that provide scope for nanoparticle conjugation can be introduced that shift the Q bands into the therapeutic window.


2020 ◽  
Vol 24 (04) ◽  
pp. 548-562 ◽  
Author(s):  
Semih Gorduk

In this study, the synthesis and characterization of novel 4-chloro-5-((2,3-dihydrobenzo-1,4-benzodioxin-2-yl)methoxy)phthalonitrile (1) and its peripherally octa-substituted Zn(II) (Pc-Zn), In(III) (PcInCI) and Mg(II) (Pc-Mg) phthalocyanine (Pc) derivatives are reported for the first time. FT-IR, elemental analysis, UV-vis, NMR and MS techniques were used for characterization studies of the compounds. Aggregation properties of the compounds were evaluated in DMF, DMSO and THF solvents in different concentrations, and the compounds did not tend to aggregate in these solvents. In addition, photophysicochemical properties such as fluorescence, photodegradation and singlet oxygen quantum yield of the compounds were examined in DMSO, DMF and THF solvents to show the potential use of these novel compounds as photosensitizers for photodynamic therapy (PDT). The effects of zinc, indium and magnesium metals, octa substitutions in peripheral positions and different types of solvents on photophysicochemical properties were investigated. The singlet oxygen quantum yield values of compounds ranged from 0.27 to 0.77 in different solvents. As a result of the photophysicochemical properties, these compounds can be considered as potential candidates for PDT, applications.


2017 ◽  
Vol 21 (01) ◽  
pp. 59-66 ◽  
Author(s):  
Lixin Zang ◽  
Huimin Zhao ◽  
Qicheng Fang ◽  
Ming Fan ◽  
Tong Chen ◽  
...  

Sinoporphyrin sodium (DVDMS) is a novel photosensitizer with high photodynamic therapy (PDT) effect. Reasons for its high photo-activity were investigated according to the study of photophysical characteristics of DVDMS. Extinction coefficients ([Formula: see text] of DVDMS at 405 nm and 630 nm are 4.36 × 105 and 1.84 × 104 M[Formula: see text].cm[Formula: see text]; fluorescence quantum yield ([Formula: see text] is 0.026; quantum yield of lowest triplet state formation is 0.94 and singlet oxygen quantum yield ([Formula: see text] is 0.92. Although [Formula: see text] of DVDMS is only 10% higher than that of Photofrin[Formula: see text] (0.83), the extinction coefficient of DVDMS at 630 nm is 10-fold greater than that of Photofrin[Formula: see text]. This leads to its higher singlet oxygen generation efficiency ([Formula: see text]. The higher [Formula: see text] of DVDMS can result in an effective reduction of dosage (1/10 of Photofrin[Formula: see text] reaching the same cytotoxic effect as Photofrin[Formula: see text]. Even though [Formula: see text] is approximately equal to that of Photofrin[Formula: see text], brightness ([Formula: see text] of DVDMS is 10-fold greater than that of Photofrin[Formula: see text] because of the 10-fold greater extinction coefficient. Thus, fluorescence diagnosis ability of 0.2 mg/kg DVDMS is comparable to that of 2 mg/kg Photofrin[Formula: see text] used in PDT. Overall, the 10-fold greater extinction coefficients are responsible for the high brightness and singlet oxygen generation efficiency of DVDMS.


Author(s):  
GIAMPAOLO RICCIARDI ◽  
SANDRA BELVISO ◽  
MAURIZIO D'AURIA ◽  
FRANCESCO LELJ

The synthesis, spectroscopic and electrochemical properties of the Lu ( oepz )2 (oepz ≡ 2,3,7,8,12,13,17,18-octakis(ethyl)-5,10,15,20-porphyrazinato) complex are reported. The complex, as inferred from UV-vis spectra recorded at different concentrations, strongly aggregates in solution, the most likely association mode being dimerization. The complex shows a weak near-IR absorption (λ max = 834 nm) that is considerably blue-shifted compared with the near-IR absorption of bis(π-radical) lutetium analogues. The Lu ( oepz )2 neutral species is electrochemically stable between 0.73 and -0.98 V (vs Ag/AgCl), which is the largest range of stability for neutral lutetium di- tetrapyrrole complexes. Lu ( oepz )2 shows excellent Type II photodynamic activity, as indicated by the value of the singlet oxygen generation quantum yield φΔ of 0.94 obtained by comparison with meso-tetraphenylporphyrin.


2009 ◽  
Vol 13 (03) ◽  
pp. 376-381 ◽  
Author(s):  
Ofir Arad ◽  
Noemí Rubio ◽  
David Sánchez-García ◽  
José I. Borrell ◽  
Santi Nonell

The effects of 9-substitution on the photophysical properties of tetraphenylporphycenes (TPPo) have been examined using an electron acceptor, an electron donor, and an electroneutral substituent as model compounds. Introduction of the acetoxy group enhances the fluorescence ability of the compound, with only a small reduction in the singlet oxygen quantum yield. The optical and photophysical properties of a nitro-porphycene are reported for the first time. The compound is emerald green, contrasting with the typical blue color of porphycenes. While this compound is much less fluorescent than unsubstituted TPPo, its singlet oxygen quantum yield is only slightly lower, almost identical to that of the 9-acetoxy compound (9-AcOTPPo). Finally, the electron-donor amino group is found to induce the greatest changes in the porphycene photophysics, decreasing strongly its fluorescence and singlet oxygen quantum yields. With the exception of such electron donors, introduction of substituents at the 9 (meso) position of tetraphenylporphycenes is not detrimental to their photophysics and photosensitizing ability and thus can be exploited for targeted photodynamic therapy purposes.


Author(s):  
Anja Busemann ◽  
Ingrid Flaspohler ◽  
Xue-Quan Zhou ◽  
Claudia Schmidt ◽  
Sina K. Goetzfried ◽  
...  

AbstractThe known ruthenium complex [Ru(tpy)(bpy)(Hmte)](PF6)2 ([1](PF6)2, where tpy = 2,2’:6’,2″-terpyridine, bpy = 2,2’-bipyridine, Hmte = 2-(methylthio)ethanol) is photosubstitutionally active but non-toxic to cancer cells even upon light irradiation. In this work, the two analogs complexes [Ru(tpy)(NN)(Hmte)](PF6)2, where NN = 3,3'-biisoquinoline (i-biq, [2](PF6)2) and di(isoquinolin-3-yl)amine (i-Hdiqa, [3](PF6)2), were synthesized and their photochemistry and phototoxicity evaluated to assess their suitability as photoactivated chemotherapy (PACT) agents. The increase of the aromatic surface of [2](PF6)2 and [3](PF6)2, compared to [1](PF6)2, leads to higher lipophilicity and higher cellular uptake for the former complexes. Such improved uptake is directly correlated to the cytotoxicity of these compounds in the dark: while [2](PF6)2 and [3](PF6)2 showed low EC50 values in human cancer cells, [1](PF6)2 is not cytotoxic due to poor cellular uptake. While stable in the dark, all complexes substituted the protecting thioether ligand upon light irradiation (520 nm), with the highest photosubstitution quantum yield found for [3](PF6)2 (Φ[3] = 0.070). Compounds [2](PF6)2 and [3](PF6)2 were found both more cytotoxic after light activation than in the dark, with a photo index of 4. Considering the very low singlet oxygen quantum yields of these compounds, and the lack of cytotoxicity of the photoreleased Hmte thioether ligand, it can be concluded that the toxicity observed after light activation is due to the photoreleased aqua complexes [Ru(tpy)(NN)(OH2)]2+, and thus that [2](PF6)2 and [3](PF6)2 are promising PACT candidates. Graphic abstract


2021 ◽  
Vol 11 (6) ◽  
pp. 2576
Author(s):  
Sebastian Lijewski ◽  
Jiří Tydlitát ◽  
Beata Czarczynska-Goslinska ◽  
Milan Klikar ◽  
Jadwiga Mielcarek ◽  
...  

Tetrapyrazinoporphyrazine with peripheral menthol-thiophenyl substituents was synthesized using Linstead conditions and purified by flash column chromatography. The optimized synthetic and purification procedures allowed us to obtain a new macrocycle with 36% yield. Tetrapyrazinoporphyrazine derivative was characterized by UV–Vis and NMR spectroscopy, as well as MS spectrometry. Complex NMR studies using 1D and 2D NMR techniques allowed the analysis of the bulky menthol-thiophenyl substituted periphery of the new macrocycle. Further, photochemical stability and singlet oxygen quantum yield were determined by indirect method with diphenylisobenzofuran. The new tetrapyrazinoporphyrazine revealed low generation of singlet oxygen with a quantum yield of singlet oxygen formation at 2.3% in dimethylformamide. In turn, the macrocycle under irradiation with visible light presented very high stability with quantum yield for photostability of 9.59 × 10−6 in dimethylformamide, which figures significantly exceed the border for its classification as a stable porphyrinoid (10−4–10−5).


2021 ◽  
Author(s):  
Nan Zheng ◽  
Xiahui Li ◽  
Shangwei Huangfu ◽  
Kangkai Xia ◽  
Ruofei Yue ◽  
...  

A linear poly-porphyrin with high Mw and conjugated by PEG and acetazolamide was developed with enhanced singlet oxygen quantum yield, improved photo-toxicity and excellent in vivo photodynamic therapy.


Sign in / Sign up

Export Citation Format

Share Document