Effect of Crystal Plasticity Parameters on Microscopic Stress Distribution in Polycrystalline Aggregate Model

2013 ◽  
Vol 05 (01) ◽  
pp. 1350003 ◽  
Author(s):  
Yoshiki Mikami ◽  
Kazuo Oda ◽  
Masahito Mochizuki

Crystal plasticity parameters for numerical simulations are difficult to experimentally measure on the microscopic scale. One possible approach to avoid the difficulty is to determine the parameters that can be used to reproduce the stress–strain curve by employing a polycrystalline aggregate model. In this study, the effect of crystal plasticity parameters on stress–strain curves on a macroscopic scale and on stress distribution on a microscopic scale was investigated by using polycrystalline aggregate simulation. The parameters investigated were initial slip strength (τ0), initial hardening modulus (h0) and saturation slip strength (τs). The effect of these parameters on macroscopic stress–strain curves was found to be the followings: τ0 controls the yield stress or proof stress, and both h0 and τs control the strain-hardening behavior. The effect of these parameters on microscopic stress distribution was also investigated because similar stress–strain curve can be obtained by using different sets of crystal plasticity parameters. Consequently, even if these parameters are slightly different, a similar microscopic stress distribution can be obtained by properly reproducing the macroscopic stress–strain curve.

Author(s):  
James D. Hart ◽  
Nasir Zulfiqar ◽  
Joe Zhou

Buried pipelines can be exposed to displacement-controlled environmental loadings (such as landslides, earthquake fault movements, etc.) which impose deformation demands on the pipeline. When analyzing pipelines for these load scenarios, the deformation demands are typically characterized based on the curvature and/or the longitudinal tension and compression strain response of the pipe. The term “strain demand” is used herein to characterize the calculated longitudinal strain response of a pipeline subject to environmentally-induced deformation demands. The shape of the pipe steel stress-strain relationship can have a significant effect on the pipe strain demands computed using pipeline deformation analyses for displacement-controlled loading conditions. In general, with sufficient levels of imposed deformation demand, a pipe steel stress-strain curve with a relatively abrupt or “sharp” elastic-to-plastic transition will tend to lead to larger strain demands than a stress-strain curve with a relatively rounded elastic-to-plastic transition. Similarly, a stress-strain curve with relatively low strain hardening modulus characteristics will tend to lead to larger strain demands than a stress-strain curve with relatively high strain hardening modulus characteristics. High strength UOE pipe can exhibit significant levels of anisotropy (i.e., the shapes of the stress-strain relationships in the longitudinal tension/compression and hoop tension/compression directions can be significantly different). To the extent that the stress-strain curves in the different directions can have unfavorable shape characteristics, it follows that anisotropy can also play an important role in pipeline strain demand evaluations. This paper summarizes a pipeline industry research project aimed at evaluation of the effects of anisotropy and the shape of pipe steel stress-strain relationships on pipeline strain demand for X80 and X100 UOE pipe. The research included: a review of pipeline industry literature on the subject matter; a discussion of pipe steel plasticity concepts for UOE pipe; characterization of the anisotropy and stress-strain curve shapes for both conventional and high strain pipe steels; development of representative analytical X80 and X100 stress-strain relationships; and evaluation of a large matrix of ground-movement induced pipeline deformation scenarios to evaluate key pipe stress-strain relationship shape and anisotropy parameters. The main conclusion from this work is that pipe steel specifications for high strength UOE pipe for strain-based design applications should be supplemented to consider shape-characterizing parameters such as the plastic complementary energy.


2018 ◽  
Vol 185 ◽  
pp. 00020
Author(s):  
Tung-Sheng Yang ◽  
Jhong -Yuan Li

The process of precision forging has been developed recently because of its advantages of giving high production rates and improved strength. For complete filling up, predicting the power requirement and final shape are important features of the forging process. A finite element method is used to investigate the forging force, the final shape and the stress distribution of the parking sensor shell forging. The stress-strain curve of AL-6082 is obtained by the computerized screw universal testing machine. The friction factor between AL-6082 alloy and die material (SKD11) are determined by using ring compression test. Stress-strain curve and fiction factor are then applied to the finite element analysis of the parking sensor shell forging. Maximum forging load, effective stress distribution and shape dimensions are determined of the parking sensor shell forging, using the finite element analysis. Then the parking sensor shells are formed by the forging machine. Finally, the experimental data are compared with the results of the current simulation for the forging force and shape dimensions of the parking sensor shell.


2009 ◽  
Vol 18 (5) ◽  
pp. 055003 ◽  
Author(s):  
Go Murasawa ◽  
Kazuhiro Kitamura ◽  
Satoru Yoneyama ◽  
Shuichi Miyazaki ◽  
Ken Miyata ◽  
...  

SIMULATION ◽  
2021 ◽  
pp. 003754972110315
Author(s):  
B Girinath ◽  
N Siva Shanmugam

The present study deals with the extended version of our previous research work. In this article, for predicting the entire weld bead geometry and engineering stress–strain curve of the cold metal transfer (CMT) weldment, a MATLAB based application window (second version) is developed with certain modifications. In the first version, for predicting the entire weld bead geometry, apart from weld bead characteristics, x and y coordinates (24 from each) of the extracted points are considered. Finally, in the first version, 53 output values (five for weld bead characteristics and 48 for x and y coordinates) are predicted using both multiple regression analysis (MRA) and adaptive neuro fuzzy inference system (ANFIS) technique to get an idea related to the complete weld bead geometry without performing the actual welding process. The obtained weld bead shapes using both the techniques are compared with the experimentally obtained bead shapes. Based on the results obtained from the first version and the knowledge acquired from literature, the complete shape of weld bead obtained using ANFIS is in good agreement with the experimentally obtained weld bead shape. This motivated us to adopt a hybrid technique known as ANFIS (combined artificial neural network and fuzzy features) alone in this paper for predicting the weld bead shape and engineering stress–strain curve of the welded joint. In the present study, an attempt is made to evaluate the accuracy of the prediction when the number of trials is reduced to half and increasing the number of data points from the macrograph to twice. Complete weld bead geometry and the engineering stress–strain curves were predicted against the input welding parameters (welding current and welding speed), fed by the user in the MATLAB application window. Finally, the entire weld bead geometries were predicted by both the first and the second version are compared and validated with the experimentally obtained weld bead shapes. The similar procedure was followed for predicting the engineering stress–strain curve to compare with experimental outcomes.


2012 ◽  
Vol 27 (2) ◽  
pp. 318-328 ◽  
Author(s):  
Svetlana Borodulina ◽  
Artem Kulachenko ◽  
Mikael Nygårds ◽  
Sylvain Galland

Abstract We have investigated a relation between micromechanical processes and the stress-strain curve of a dry fiber network during tensile loading. By using a detailed particle-level simulation tool we investigate, among other things, the impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds. This is probably the first three-dimensional model which is capable of simulating the fracture process of paper accounting for nonlinearities at the fiber level and bond failures. The failure behavior of the network considered in the study could be changed significantly by relatively small changes in bond strength, as compared to the scatter in bonding data found in the literature. We have identified that compliance of the bonding regions has a significant impact on network strength. By comparing networks with weak and strong bonds, we concluded that large local strains are the precursors of bond failures and not the other way around.


1966 ◽  
Vol 1 (4) ◽  
pp. 331-338 ◽  
Author(s):  
T C Hsu

Three different definitions of the yield point have been used in experimental work on the yield locus: proportional limit, proof strain and the ‘yield point’ by backward extrapolation. The theoretical implications of the ‘yield point’ by backward extrapolation are examined in an analysis of the loading and re-loading stress paths. It is shown, in connection with experimental results by Miastkowski and Szczepinski, that the proportional limit found by inspection is in fact a point located by backward extrapolation based on a small section of the stress-strain curve, near the elastic portion of the curve. The effect of different definitions of the yield point on the shape of the yield locus and some considerations for the choice between them are discussed.


Sign in / Sign up

Export Citation Format

Share Document