PHYSARUM SPATIAL LOGIC

2011 ◽  
Vol 07 (03) ◽  
pp. 483-498 ◽  
Author(s):  
ANDREW SCHUMANN ◽  
ANDY ADAMATZKY

Plasmodium of Physarum polycephalum is a large single cell capable for distributed sensing, information processing, decentralized decision-making and collective action. In the paper, we interpret basic features of the plasmodium foraging behavior in terms of process calculus and spatial logic and show that this behavior could be regarded as one of the natural implementations of spatial logic without modal operators.

2010 ◽  
Vol 7 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Andrew Adamatzky

Plasmodium ofPhysarum polycephalumis a single huge (visible by naked eye) cell with a myriad of nuclei. The plasmodium is a promising substrate for non-classical, nature-inspired computing devices. It is capable of approximation of the shortest path in a maze, computation of planar proximity graphs and plane tessellations, primitive memory and decision making. The unique properties of the plasmodium make it an ideal candidate for a role of amorphous biological robots with massive parallel information processing and distributed inputs and outputs. We show that when adhered to a lightweight object resting on a water surface the plasmodium can propel the object by oscillating its protoplasmic pseudopodia. In experimental laboratory conditions and computational experiments we study phenomenology of the plasmodium-floater system, and possible mechanisms of controlling motion of objects propelled by on-board plasmodium.


2016 ◽  
Vol 12 (02) ◽  
pp. 97-111 ◽  
Author(s):  
Andrew Schumann

In this paper, I theoretically summarize, which behavioral possibilities the plasmodium of Physarum polycephalum has in order to be considered the medium of computation. I show that plasmodia can be represented as a natural implementation of different abstract automata: cellular automata, Kolmogorov–Uspensky machines, Schönhage’s storage modification machines, random-access machines. As a programming language for simulating Physarum plasmodium behavior, process calculus can be used.


Prospects ◽  
1988 ◽  
Vol 13 ◽  
pp. 181-223 ◽  
Author(s):  
Howard P. Segal

“Technology Spurs Decentralization Across the Country.” So reads a 1984 New York Times article on real-estate trends in the United States. The contemporary revolution in information processing and transmittal now allows large businesses and other institutions to disperse their offices and other facilities across the country, even across the world, without loss of the policy- and decision-making abilities formerly requiring regular physical proximity. Thanks to computers, word processors, and the like, decentralization has become a fact of life in America and other highly technological societies.


Author(s):  
Cheng-Ju Hsieh ◽  
Mario Fifić ◽  
Cheng-Ta Yang

Abstract It has widely been accepted that aggregating group-level decisions is superior to individual decisions. As compared to individuals, groups tend to show a decision advantage in their response accuracy. However, there has been a lack of research exploring whether group decisions are more efficient than individual decisions with a faster information-processing speed. To investigate the relationship between accuracy and response time (RT) in group decision-making, we applied systems’ factorial technology, developed by Townsend and Nozawa (Journal of Mathematical Psychology 39, 321–359, 1995) and regarded as a theory-driven methodology, to study the information-processing properties. More specifically, we measured the workload capacity CAND(t), which only considers the correct responses, and the assessment function of capacity AAND(t), which considers the speed-accuracy trade-off, to make a strong inference about the system-level processing efficiency. A two-interval, forced-choice oddball detection task, where participants had to detect which interval contains an odd target, was conducted in Experiment 1. Then, in Experiment 2, a yes/no Gabor detection task was adopted, where participants had to detect the presence of a Gabor patch. Our results replicated previous findings using the accuracy-based measure: Group detection sensitivity was better than the detection sensitivity of the best individual, especially when the two individuals had similar detection sensitivities. On the other hand, both workload capacity measures, CAND(t) and AAND(t), showed evidence of supercapacity processing, thus suggesting a collective benefit. The ordered relationship between accuracy-based and RT-based collective benefit was limited to the AAND(t) of the correct and fast responses, which may help uncover the processing mechanism behind collective benefits. Our results suggested that AAND(t), which combines both accuracy and RT into inferences, can be regarded as a novel and diagnostic tool for studying the group decision-making process.


Sign in / Sign up

Export Citation Format

Share Document