One-Pot Hydrothermal Synthesis of MWCNT/ZrO2 Composites for Enhancing Electromagnetic Wave Absorption Performance

NANO ◽  
2020 ◽  
Vol 15 (03) ◽  
pp. 2050034
Author(s):  
Honglong Xing ◽  
Qingping Liu ◽  
Ligang Zhang ◽  
Ye Liu ◽  
Mingqiang Hu

Electromagnetic (EM) wave absorption materials have drawn a lot of attention because they can effectively reduce EM wave pollution from electronic equipment. In this work, we combined ZrO2 nanoparticles with multi-walled carbon nanotubes (MWCNTs) and explored applications of MWCNT/ZrO2 composites in EM wave absorbing field. ZrO2 nanoparticles with a high crystalline were synthesized by one-step hydrothermal method. Adding MWCNTs in this hydrothermal process, ZrO2 nanoparticles aggregated together to form uneven lumps and wraps on MWCNTs surfaces. MWCNTs improved the conductivity loss and electron polarization capability of composites. The minimum reflection loss (RL) of MWCNT/ZrO2 composites reached [Formula: see text]39.73 dB at a thickness of 2[Formula: see text]mm. Such excellent EM wave absorption properties are attributed to the dielectric loss, dipole polarizations and interfacial polarizations. This composite can be a promising candidate as high efficiency EM wave absorption material and used for commercial production because of the simple synthesis methods.

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Bitao Fan ◽  
Qiufang Yao ◽  
Chao Wang ◽  
Ye Xiong ◽  
Qingfeng Sun ◽  
...  

Spawns structure of rod-like ZnO wrapped in the cellulose nanofibers was successfully fabricated through a facile one-step hydrothermal method, and their electromagnetic wave absorption properties were investigated. The structure and properties of the composite aerogel were characterized. The enlarged morphology images showed that the as-prepared cellulose nanofiber/ZnO samples were spawns structure of rod-like ZnO wrapped in the cellulose nanofibers. The composite aerogel in a wax matrix exhibited excellent electromagnetic wave absorption performance over 2–18 GHz. The widest absorption bandwidth of 30 wt% contained with reflection loss values less than −10 dB was up to 12 GHz (6–18 GHz) at the thickness of 5.5 mm and the minimum reflection loss value reached −26.32 dB at 15.2 GHz when the thickness of the absorber was 3 mm.


2021 ◽  
Author(s):  
Nasrin Saberi Harouni ◽  
Hossein Naeimi

Abstract Multicomponent reactions are reactions in which three or more are agreeable of raw interests, composed in a one-step chemical process and the product is formed they give. Since multivariate reactions are monovalent reactions and Single-step conversions to ideal synthesis are very close. In this research, one pot three components reaction was carried out between 1, 3-dimethylbarbituric acid, malononitrile and different aldehydes in the attendance of Cu/Co/Ni/MWCNTs as a recyclable catalyst. This catalyst indicated high catalytic actuality with good proficiency and reusable under mild reservation. This reaction is performed fine at ambient temperature. This method proposed numerous materials such as being environmentally amicable for short reaction times and creating high yield products. The catalysts were collected and specified with diversity spectroscopic, such as techniques, such as FT-IR, X-ray fracture, and scanning electron microscopy. After finalization of the reaction, the vintage was obsolete, purified and identified by the melting points, infrared spectroscopy (FT-IR) and the magnetic resonance of the hydrogen nucleus (1H NMR) techniques.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nana Chen ◽  
Chaojun Ren ◽  
Like Sun ◽  
Haoyue Xue ◽  
Han Yang ◽  
...  

The developments of high-efficiency thermoelectric materials are extremely exigent for energy harvesting. In this study, a novel MWCNTs/Ag2Se (MCAS) composite was successfully fabricated by a typical one-pot hydrothermal method and...


Author(s):  
Anabel Renteria ◽  
Victor Hugo Balcorta ◽  
Cory Marquez ◽  
Aaron Arturo Rodriguez ◽  
Ivan Renteria-Marquez ◽  
...  

Abstract With recent advances of additive manufacturing (AM) technology, direct ink write (DIW) printing has allowed to incorporate multi-material printing of various materials with freedom of design and complex geometric shapes to complete functional sensors in a one-step fabrication. This paper introduces the use of DIW 3D printing of polydimethylsiloxane (PDMS) with barium titanate (BTO) filler as stretchable composites with tunable piezoelectric properties that can be used for force sensors applications. To improve the bonding between stretchable piezoelectric composites and electrodes, multi-walled carbon nanotubes (MWCNT) was included in the fabrication of electrodes at a fixed ratio of 11 wt. %. The alignment of the BTO dipoles was achieved through corona poling method, which applies an electric charge on the surface layer of the functional material, aligning the dipoles in the desired direction and thus gaining the piezoelectricity. Different BTO mixing ratios (10-50 wt. %) were evaluated in order to obtain tunable piezoelectric properties and compare the sensitivity with respect their elastic properties. Tensile testing and piezoelectric testing were carried out to characterize mechanical and piezoelectric properties. Results showed that fabricated PDMS with 50 wt. % BTO gave the highest piezoelectric coefficient (d33) of 11.5 pC/N and with an output voltage of 385 mV under compression loading of >200 lbF. This demonstrates feasibility of using multi-material DIW printing to fabricate piezoelectric force sensors with integrated electrodes in one-step without compromising the flexibility of the material.


2018 ◽  
Vol 8 (10) ◽  
pp. 1925 ◽  
Author(s):  
Thiago Oliveira ◽  
Simone Morais

Multi-walled carbon nanotubes (MWCNT) have provided unprecedented advances in the design of electrochemical sensors. They are composed by sp2 carbon units oriented as multiple concentric tubes of rolled-up graphene, and present remarkable active surface area, chemical inertness, high strength, and low charge-transfer resistance in both aqueous and non-aqueous solutions. MWCNT are very versatile and have been boosting the development of a new generation of electrochemical sensors with application in medicine, pharmacology, food industry, forensic chemistry, and environmental fields. This work highlights the most important synthesis methods and relevant electrochemical properties of MWCNT for the construction of electrochemical sensors, and the numerous configurations and successful applications of these devices. Thousands of studies have been attesting to the exceptional electroanalytical performance of these devices, but there are still questions in MWCNT electrochemistry that deserve more investigation, aiming to provide new outlooks and advances in this field. Additionally, MWCNT-based sensors should be further explored for real industrial applications including for on-line quality control.


Carbon ◽  
2019 ◽  
Vol 141 ◽  
pp. 782-793 ◽  
Author(s):  
Markus Martincic ◽  
Sandra Vranic ◽  
Elzbieta Pach ◽  
Stefania Sandoval ◽  
Belén Ballesteros ◽  
...  

2014 ◽  
Vol 2 (30) ◽  
pp. 11799-11806 ◽  
Author(s):  
Xuemei Zhou ◽  
Zhaoming Xia ◽  
Zhiyun Zhang ◽  
Yuanyuan Ma ◽  
Yongquan Qu

One-step hydrothermal synthesis of ultra-thin β-Ni(OH)2 nanoplates (1.5–3.0 nm thickness) and their composite with multi-walled carbon nanotubes in the absence of surfactants function as highly efficient and stable electrocatalysts for oxygen evolution reaction.


Sign in / Sign up

Export Citation Format

Share Document