Research on Lubrication and Wear-Resistant Mechanism of Ni60A/MoS2 Composite Coating

2011 ◽  
Vol 189-193 ◽  
pp. 231-235
Author(s):  
Yun Cai Zhao ◽  
Li Wang

The influence of MoS2 lubrication phase on the tribological properties of the Ni60A/MoS2 composite coating was conducted on UMT-2 micro-wear testing machine (USA), discussing the self-lubricating effect and mechanism. The result shows that with the increasing content of MoS2, the friction coefficient of the coating which changed with the increasing content of the MoS2 presents firstly decreases then increases, and the value reach the minimum when the quality percent of MoS2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS2 composite coating is due to the forming of MoS2 lubricating film in friction surface. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS2 lubricating film.

2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.


2013 ◽  
Vol 572 ◽  
pp. 397-400
Author(s):  
Shao Gang Liu ◽  
Li Quan Li ◽  
Jin Li Wang

The influence of the oil supply, nozzle type, air supply, the performance of sliding friction element under the lubrication preloads were investigated by measuring the element’s temperature and friction coefficient based on the M2000-A friction wear testing machine. When the load, rotating speed and air supply is at 1500N, 210rpm and 2.25 m3/h level respectively, as the oil supply is increased, the temperature rises and friction coefficient decreases. The temperature rise decreases monotonically. The friction coefficient rises monotonically with the air supply increases when the air supply is less than 2.4m3/h, but when the air supply is more than 2.4m3/h, the friction coefficient decreases monotonically. Furthermore, when the oil supply is reached 15ml/h, they remain almost unchanged regardless of direct nozzle and conical nozzle. Nevertheless, the direct nozzle is more suitable than the conical nozzle in oil-air lubrication of the sliding friction pairs .


2018 ◽  
Vol 70 (8) ◽  
pp. 1396-1401 ◽  
Author(s):  
Daoyi Wu ◽  
Yufu Xu ◽  
Lulu Yao ◽  
Tao You ◽  
Xianguo Hu

Purpose This paper aims to study the upgradation of the lubricating performance of the renewable base oil , and to study the tribological behavior of graphene oxide (GO) sheets used as lubricating additives in bio-oil for iron/steel contact. Design/methodology/approach A multifunctional end-face tribometer was used to characterize the friction coefficient and wear loss of the tribosystem under different lubricants. Findings The experimental results show that GO sheets with small size benefit lubricating effects and the optimal concentration of GO sheets in bio-oil is 0.4-0.6 per cent, which can form a complete lubricating film on the frictional interfaces and obtain a low friction coefficient and wear loss. Higher concentration of GO sheets can result in a significant aggregation of the sheets, reducing the content of the lubricating components in the bio-oil, which results in the increase in friction and wear; at this stage, the main wear pattern was ascribed to adhesive wear. Practical implications These results show a promising prospect of improving the tribological performance of renewable base oil with the introduction of GO sheets as additives. Originality/value No literature has covered the tribological behaviour of GO sheets in bio-oil. This study contributes to accelerating the application of bio-oil.


2011 ◽  
Vol 239-242 ◽  
pp. 1896-1900
Author(s):  
Yan Hong Yan ◽  
Yu Lin Yang ◽  
Nan Wang

Influence of frictional wear characteristics of the cast iron-cast iron friction pair were investigated in the Self-repairing Additive with different concentration by using MMU-5G end-face friction and wear testing machine. The capability of generating self-repair coatings on the cast iron tribo-surface was verified in the Self-repairing Additive. The surface images of friction pair and their chemical composition were detected by using SEM and EDS. The result indicates different concentration has a great influence on frictional wear characteristics of friction pair in the Self-repairing Additive. In the self-repairing Additive, the Self-repair coatings are not formed on the cast-iron worn surface; self-repairing Additive has remarkable effect on antifriction and wearing of cast iron.


NANO ◽  
2021 ◽  
pp. 2150111
Author(s):  
Shengli You ◽  
Ming Zhou ◽  
Mingyue Wang ◽  
Xin Chen ◽  
Long Jin ◽  
...  

In this study, we used a four-ball friction and wear testing machine to test the tribological properties of [HPy]BF4 ionic liquids (ILs), low-layer graphene (G), and IL and G compounds (IL/G) as lubricant additives at variousconcentrations, loads, and speeds. The morphology of the wear scar was characterized by a white-light interferometer and a scanning electron microscope (SEM). The results showed that the optimal concentrations of IL and G were 0.10[Formula: see text]wt.% and 0.05[Formula: see text]wt.%, respectively. When the IL concentration was 0.10[Formula: see text]wt.%, the friction coefficient and the wear scar diameter (WSD) reduced by approximately 18% and 8%, respectively, compared to the base oil. When the concentration of G was 0.05[Formula: see text]wt.%, the friction coefficient and WSD reduced by approximately 23% and 12%, respectively, compared to the base oil. After adding the optimal concentration of the IL/G composite additive under the same test conditions, the average friction coefficient of the steel ball reduced by approximately 30%, and the average WSD reduced by approximately 18%. IL/G nanoadditives could be easily attached to the pit area on the friction surface of the steel ball, which made the contact surface of the friction pair smoother and the area of the oil film bearing the load larger, compared to those using the base oil. These two combined phenomena promoted synergistic antifriction and antiwear effects, which significantly improved the frictional performance of the base oil.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Y. Zhou ◽  
J. H. Hu ◽  
B. Tan ◽  
Y. Jiang ◽  
Y. F. Tang

Summary Sealing is a technical bottleneck that affects drilling efficiency and cost in deep, difficult-to-drill formations. The spiral combination seal with active sand removal performance is a new type of seal, and the wear mechanism is not clear, resulting in no effective design. In this study, the wear properties of materials were measured by a friction-and-wear testing machine, and the measurement methods and criteria of wear loss and friction coefficient were established. The fitting function of working condition and friction coefficient was studied by fitting regression method. The law of influence of working conditions on friction coefficient and wear amount was determined. The actual wear model and evaluation criteria of wear condition were established by using wear test data and geometric relationship. The relationship among working conditions, contact stress, and wear depth is determined by numerical simulation method, and the wear mechanism of the new seal is revealed, which provides a theoretical basis for its application.


2014 ◽  
Vol 490-491 ◽  
pp. 29-33 ◽  
Author(s):  
Wen Bo Tang ◽  
Cong Hui Lu ◽  
Yan Peng Li

TiCp/Al composites coating was in-situ synthesized on the L1060 alloy surface by TIG cladding. The microstructure and the phase of the coating were analyzed by OM, SEM, ADS and XRD, and the properties was been tested by micro-hardnessmeter and wear testing machine. The results show that the composite coating has no porosity, inclusions and other defects. The microstructure of the composite coating mainly consists of TiC particle and aluminum. Microstructural evidence suggests that the formation of TiC occur not only by reaction between Ti dissolved in Al and Al4C3, but also by reaction between C dissolved in Al and Al3Ti. The hardness of the composite coating obtained by TIG cladding is up to 120HV0.2. The wear resistance of composite coating is 1.6 times more than that of the matrix.


2011 ◽  
Vol 694 ◽  
pp. 914-918
Author(s):  
Yu Qiang Zhao ◽  
Yan Zang ◽  
Yu Lin Qiao ◽  
Shan Lin Yang

The n-SiO2/FeS solid lubrication composite coating is prepared by means of the comprehensive treatment process of gridded laser quenching, low temperature ion sulfuration and vacuum impregnation technology. The tribological properties of n-SiO2/FeS solid lubrication composite coating are investigated under the condition of dry sliding, and the lubrication mechanisms are also preliminary discussed. The experiment results reveal that the friction coefficient of the coating is in the range of 0.065~0.10 when tested in 4067 minutes. Furthermore, its wear rate is only 6% of FeS solid lubrication duplex coating. This is testified that the n-SiO2/FeS solid lubrication composite coating is durable with low friction coefficient and wear resistance.


2014 ◽  
Vol 633-634 ◽  
pp. 137-140 ◽  
Author(s):  
Bin Sui ◽  
Jian Min Zeng ◽  
Ping Chen ◽  
Li Hua Liang ◽  
Wu Kui Gan ◽  
...  

In order to improve performance of Al-Sn bearing alloys, a new Al2O3/Al-Sn composite was fabricated through in-situ reaction between Al and SiO2. A study has been conducted to investigate tribological performance of the composite on MMW-1 Computer controlled vertical universal friction and wear testing machine. The results show that Al2O3 and Si particles are mainly distributed in the grain boundary and particles are often coated by a thin Sn layer. Friction coefficient of Al2O3/Al-Sn composites is decreased with Sn additions up to 21wt. %.


Author(s):  
Yuanbo Wu ◽  
Xuefeng Yang ◽  
Shouren Wang ◽  
Jian Cheng ◽  
Hui Zhang ◽  
...  

In order to study the tribological properties of V-shaped texture under oil lubrication conditions, the loading force and speed are selected as the influencing factors, each factor selected six levels. Experimental study on friction and wear of V-shaped texture with ring arrangement is finished by MMG-10 Multifunctional Friction and Wear Testing Machine, and the data of the experimental results are analyzed by using Matlab. The results show that there is a near linear relationship between the friction coefficient and the loading force and velocity. The relationship between the friction coefficient and the loading force and velocity can be expressed by a functional equation. The loading force has a greater influence on the friction coefficient than the speed. The SEM images of the post-test specimens show that the main weared zone of the V-shaped texture is the tip part. Create a single V-shaped texture model with Solidworks and use CFD to divide the mesh into the Fluent solution. According to the pressure distribution cloud diagram and the turbulence intensity cloud diagram, the stability of the oil film is improved due to the enhanced fluidity of the oil film and the small change in the oil pressure. The tip portion is also the region with a large turbulence intensity value. The improvement of the stability of the oil film is the key to reduce the friction coefficient of the V-shaped texture when the loading force increases.


Sign in / Sign up

Export Citation Format

Share Document