Wear Properties of DLC and Plasma Sprayed WC Structure Coating

2007 ◽  
Vol 127 ◽  
pp. 245-250 ◽  
Author(s):  
Mitsuyasu Yatsuzuka ◽  
Yoshihiro Oka ◽  
Akifumi Tomita ◽  
Noritaka Murata ◽  
Mitsuaki Hirota

Diamond-like carbon film (DLC) with an interlayer of plasma sprayed tungsten-carbide (WC) was prepared on an aluminum alloy substrate (A5052) by a hybrid process of plasma-based ion implantation and deposition using hydrocarbon gas. Typical thicknesses of DLC and WC films were 1 μm and 100 μm, respectively. The hardness and friction coefficient of DLC were typically 15 GPa and 0.15, respectively. The durability of DLC/WC/A5052 system was evaluated from the measurement of the friction coefficient by a ball-on-disk friction tester in which the loaded ball was drawn repeatedly across a sample and the load was increased with each traverse. For the DLC/A5052 system, which has no WC interlayer, the DLC film was broken quickly because of distortion of the substrate. For the DLC/WC/A5052 system, on the other hand, the DLC film was excellent in durability for long running. The wear rate of rubber rotor to the metal rotor was measured by a roller-pitching-type wear testing machine, showing large reduction in wear rate using DLC-coated metal rotor.

2014 ◽  
Vol 599-601 ◽  
pp. 153-159 ◽  
Author(s):  
Tao Zeng ◽  
Lin Jiao ◽  
Da Chuan Zhu ◽  
Chen Yang

The friction and wear properties of Cu-Te-Li alloys under dry sliding condition were studied by M-200 wear testing machine. The morphology and chemical composition of worn surfaces were analyzed by SEM and EDS, thus the effect of aging treatment on friction coefficient, wear rate and wear mechanism was discussed. The results showed that Te element could improve the wear resistance of copper alloys. With Te content increasing, the friction coefficient of Cu-Te-Li alloys declined slightly and tended to be stable as a whole, while the wear rate decreased obviously. During the process of dry sliding friction, adhesive wear was the dominant mechanism, with oxidative wear coexisting. But for the Cu-Te-Li alloys after aging treatment, abrasive wear appeared and adhesive wear was intensified, especially at higher friction velocity.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Y. Zhou ◽  
J. H. Hu ◽  
B. Tan ◽  
Y. Jiang ◽  
Y. F. Tang

Summary Sealing is a technical bottleneck that affects drilling efficiency and cost in deep, difficult-to-drill formations. The spiral combination seal with active sand removal performance is a new type of seal, and the wear mechanism is not clear, resulting in no effective design. In this study, the wear properties of materials were measured by a friction-and-wear testing machine, and the measurement methods and criteria of wear loss and friction coefficient were established. The fitting function of working condition and friction coefficient was studied by fitting regression method. The law of influence of working conditions on friction coefficient and wear amount was determined. The actual wear model and evaluation criteria of wear condition were established by using wear test data and geometric relationship. The relationship among working conditions, contact stress, and wear depth is determined by numerical simulation method, and the wear mechanism of the new seal is revealed, which provides a theoretical basis for its application.


2011 ◽  
Vol 189-193 ◽  
pp. 1647-1651
Author(s):  
Ying Wang ◽  
Yong Hong Zhang

Vanadium-Chromium composite layer is formed on the surface of cast steel by the method of V-EPC cast penetration. The dry sliding friction wear properties of composite layer are studied on MM200 friction wear testing machine in this paper. The wear surface feature of samples is also observed by SEM and the wear mechanism of samples is analyzed. The result has shown that comparing with the matrix, the wear resistance of composite layer is advanced evidently. The wear rate of composite layer is only eighth to matrix. With the increase of load and the decrease of Vanadium iron in penetrating regent, the wear rate of composite layer increase. The mechanism of composite layer is mainly oxidation and fatigue flake produced by the initiation and expansion of crack.


2013 ◽  
Vol 420 ◽  
pp. 234-239
Author(s):  
Feng Yan Yang ◽  
Shi Jie Wang ◽  
Xiao Ren Lv

The wear mechanisms of different graphite contents of NBR by 45# steel under dry sliding and water lubrication were investigated. On MPV-600 computer-controlled abrasive wear testing machine, the coefficients of friction were measured continuously. Results showed that under dry sliding condition, the rubber wear loss is big, the coefficient of friction is higher, the temperature of the friction surface is rise obviously. Wear loss and friction coefficient of NBR decrease with the increase of graphite contents; With the increase of graphite contents wear loss and the friction coefficient decreases, and is mainly due to the graphite lubrication performance and increase the stiffness of the rubber contact area. At low content of graphite, adhesive wear of NBR is showed, in the high content of graphite, abrasive wear is showed. Water lubrication condition, wear surface level off, the wear loss is very small, and the lubrication and cooling effect of water makes the friction coefficient decrease. Graphite content is higher, the wear loss and coefficient of friction is smaller.


2011 ◽  
Vol 686 ◽  
pp. 711-715 ◽  
Author(s):  
Yong Kang Zhang ◽  
Jian Liang Li ◽  
Dang Sheng Xiong ◽  
Yong Kun Qin

The nickel-based boron nitride composite coatings were prepared by reversing pulse electro-deposition. The mechanical properties and friction behavior of the coatings at high temperature were tested by using Al2O3 ceramic ball at high temperature friction-testing machine. The results show that the surface micro-hardness of the coatings increases with the addition of BN powder. Meanwhile, the friction coefficient and wear rate of specimens decreases. Especially when the BN addition is 1.5g/L the composite coatings present a minimum of friction coefficient and wear rate. In optimum process parameters, the friction coefficient of the coatings is about 0.2 at room temperature and 0.4-0.5 at 600°C. In addition, the friction and wear properties were significantly improved by plating Ni transition layer plated between substrate and composite coating.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5288
Author(s):  
Xiaoquan Wu ◽  
Daoda Zhang ◽  
Zhi Hu

The microstructural and wear properties of laser-cladding WC/Ni-based layer on Al–Si alloy were investigated by scanning electron microscope (SEM), X-ray diffraction (XRD), energy dispersive spectrometer (EDS) and wear-testing. The results show that, compared with the original specimen, the microhardness and wear resistance of the cladding layer on an Al–Si alloy were remarkably improved, wherein the microhardness of the layer achieved 1100 HV and the average friction coefficient of the layer was barely 0.14. The mainly contributor to such significant improvement was the generation of a WC/Ni-composite layer of Al–Si alloy during laser cladding. Two types of carbides, identified as M7C3 and M23C6, were found in the layer. The wear rate of the layer first increased and then decreased with the increase in load; when the load was 20 N, 60 N and 80 N, the wear rate of layer was1.89 × 10−3 mm3·m−1, 3.73 × 10−3 mm3·m−1 and 2.63 × 10−3 mm3·m−1, respectively, and the average friction coefficient (0.14) was the smallest when the load was 60 N.


2017 ◽  
Vol 733 ◽  
pp. 60-64
Author(s):  
Munir Tasdemir ◽  
Ozkan Gulsoy

In the present work, the friction and wear properties of Polypropylene (PP) based composites filled with Hydroxyapatite (HA) particles were studied. Fillers contents in the PP were 10, 20, and 30 wt%. The effects of hydroxyapatite ratio on the water absorption, friction and wear properties of the polymer composites is presented. The result showed that the addition of HA to the composite changed the water absorption, friction coefficient and wear rate.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Fei-xia Zhang ◽  
Yan-qiu Chu ◽  
Chang-sheng Li

This paper presents a facile and effective method for preparing Ni/NbSe2 composites in order to improve the wettability of NbSe2 and copper matrix, which is helpful in enhancing the friction-reducing and anti-wear properties of copper-based composites. The powder metallurgy (P/M) technique was used to fabricate copper-based composites with different weight fractions of Ni/NbSe2, and tribological properties of composites were evaluated by using a ball-on-disk friction-and-wear tester. Results indicated that tribological properties of copper-based composites were improved by the addition of Ni/NbSe2. In particular, copper-based composites containing 15 wt.% Ni/NbSe2 showed the lowest friction coefficient (0.16) and wear rate (4.1 × 10−5 mm3·N−1·m−1) among all composites.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Ashish Kumar Mishra ◽  
Ram Krishna Upadhyay ◽  
Arvind Kumar

Abstract Additive manufacturing (AM) has witnessed substantial growth in recent years due to its excellent manufacturing capabilities and innovative production methodologies. However, the mechanical suitability aspect in terms of material wear has not received much attention yet and needs rigorous assessment. This study investigates the wear anisotropy in an AlSi10Mg alloy sample fabricated by selective laser melting (SLM) technique. Different scanning strategies encompassing the island and the continuous scanning patterns were used in sample manufacturing. The effects of the scanning vector orientation, design pattern, and the island pattern size on the mechanical wear and wear anisotropy have been analyzed in detail. The study also focused upon a comparative investigation of the wear properties at the top and the side surfaces to understand the wear anisotropy in different directions. The samples are fabricated both by the fresh and the recycled powder and the role of powder state is described. The ball-on-disk test is performed to simulate the similar contact applications for marine/automotive components such as bearings. Bearing steel balls are used as a standard sliding counterpart material to investigate the wear properties. The wear microstructure is analyzed by scanning electron microscopy. Overall, the island strategy with 2 mm hatch style and 45 deg scan rotation have achieved better wear resistance and friction coefficient compared with the continuous hatch style. The wear behavior is found to be anisotropic. The Raman spectra validate the presence of silicon and carbon particles on the wear track, which have a significant effect on the tribological properties. The type of particles present in the sliding zone characterizes different wear stages. Wear mechanism is described by considering four parameters, namely, scan pattern, scan vector rotation, type of powder, and the wear measurement direction. Results show that the surface wear rate of samples made by the fresh powder is lower than the recycled powder. However, samples of the recycled powder have friction modifier characteristics. The best wear rate and friction coefficient values are obtained with the island strategy (2 mm hatch, 45 deg scan rotation) in the side plane and are 3.76 × 10−6 mm3/N m, 0.0781, respectively.


2011 ◽  
Vol 189-193 ◽  
pp. 231-235
Author(s):  
Yun Cai Zhao ◽  
Li Wang

The influence of MoS2 lubrication phase on the tribological properties of the Ni60A/MoS2 composite coating was conducted on UMT-2 micro-wear testing machine (USA), discussing the self-lubricating effect and mechanism. The result shows that with the increasing content of MoS2, the friction coefficient of the coating which changed with the increasing content of the MoS2 presents firstly decreases then increases, and the value reach the minimum when the quality percent of MoS2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS2 composite coating is due to the forming of MoS2 lubricating film in friction surface. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS2 lubricating film.


Sign in / Sign up

Export Citation Format

Share Document