SEISMIC BEHAVIOR OF A NEW TYPE OF STEEL–CONCRETE COMPOSITE RIGID CONNECTION

2011 ◽  
Vol 05 (03) ◽  
pp. 283-296 ◽  
Author(s):  
X. NIE ◽  
J. S. FAN ◽  
Y. J. SHI

The composite steel–concrete rigid frame bridge is composed of steel or composite girders connecting rigidly to RC piers, and has advantages of lower maintenance costs, faster construction, and higher resistance and ductility during an earthquake. In this paper, a new type of steel–concrete composite rigid connection is developed and studied by finite element analysis. The comparison with other types of connections shows that this new type of connection has a good structural performance from the confining of concrete by steel and preventing the buckling of steel by concrete.

2020 ◽  
Vol 198 ◽  
pp. 03012
Author(s):  
Zhenghui Qi ◽  
Xiaotong Peng ◽  
Jie Man ◽  
Chen Lin ◽  
Wenxu Duan

A new steel special-shaped lattice column (SSLC) was proposed, which can be used in prefabricated steel structure residence. The finite element models of four SSLC with different cross-section (L-shaped, T1-shaped, T2-shaped and X-shaped) were established under cyclic loading by using ABAQUS, in which the strength, lateral resist capacity and hysteretic behavior were analyzed. The results indicate that SSLC has adequate strength, stiffness and safety redundancy. Among the four SSLC, the SSLC with X-shaped has the best structural performance and seismic behavior.


2013 ◽  
Vol 671-674 ◽  
pp. 859-863
Author(s):  
Xiu Li Sun

Concrete filled steel tubular (CFST) structure is a new type of structure. Assuming that concrete filled steel stub frame-shear wall is continuous elastic structure with infinite degree of freedom, free vibration equation is built. Furthermore, the effects of semi-rigid connection on natural periods and frequencies are studied. The formula to calculate the coefficient of natural periods is deduced. ANSYS is employed to determine the modal analysis. The results obtained from finite element analysis are consistent well with those obtained from formula. The results show that semi-rigid connections tend to increase the natural period. However, the effect on higher modes is negligible. The seismic design suggestions of the semi-rigid concrete filled steel stub frame-shear wall are proposed. The proposed methods may supply references for the engineers.


2021 ◽  
Vol 21 (5) ◽  
pp. 191-202
Author(s):  
Seungyeon Lee ◽  
Ilhwan You ◽  
Jongsup Park ◽  
Goangseup Zi

A detachable spudcan enables the operation of a jackup barge on any seabed. A general detachable spudcan uses a pin to connect the separate footing and leg. However, this type of structure can cause excessive stress on the pin. In this study, a new type of detachable spudcan reinforced with ring plates (upper and lower) is proposed to improve the structural performance of the conventional detachable spudcan. Finite element analysis revealed that the stress concentration in the connection part was relieved by reinforcing the lower and upper rings. In particular, reinforcing both lower and upper rings resulted in superior structural performance under eccentric supported conditions than when reinforcing only the lower ring. The structural strength of the spudcan when both the upper and lower rings were reinforced was found to be 120% of the spudcan as compared to when only the lower ring was reinforced. It is thought that the safety of the connection part can be secured when designing a detachable spudcan using the reinforcement plan verified in this study.


2011 ◽  
Vol 55-57 ◽  
pp. 664-669
Author(s):  
Jin Ning Nie ◽  
Hui Wang ◽  
De Feng Xie

According to the situation that the dual-friction drums on the new type towing machine lack stress analysis when designed, the safety is difficult to test and verify. The pull of wire rope in various positions was derived and calculated, so both compressive stress and tangent friction force generated by the pull of wire rope were calculated. The result made by ANSYS software demonstrates the safety of the left drum which suffers from larger loads, structure improvement measures are put forward for the drum.


2013 ◽  
Vol 823 ◽  
pp. 247-250
Author(s):  
Jie Dong ◽  
Wen Ming Cheng ◽  
Yang Zhi Ren ◽  
Yu Pu Wang

Because of the huge lifting weight and complex structure of large-tonnage gantry crane and in order to effectively design and review it, this paper aims to carry out a research on its structural performance based on the method of theoretical calculation and finite element analysis. During the early period of design, the method of theoretical calculations is adopted, and after specific design it comes the finite element analysis, so as to get the results of analysis under a variety of operating conditions, which illustrates that the structural design and review of large-tonnage gantry crane based on theoretical calculations and finite element are feasible, and also verifies that the method of finite element is an effective way to find a real dangerous cross-section, thus providing the basis for the design and manufacture of the crane structure.


2010 ◽  
Vol 139-141 ◽  
pp. 938-942
Author(s):  
Ji Jing Lin ◽  
Yan Hong Chen

MFPSE, Micro Free Piston Swing Engine, is a new type of miniature internal combustion engine based on the working principle of two-stroke swing engine. The successful development and operation of this type of miniature internal combustion engine provide important significance for the miniaturization of the internal combustion engine, and provide a number of important research theory, computation method and experimental data. In this article, according to the work characteristics and co-ordination requirements of MFPSE (Micro Free Piston Swing Engine), whose strain interference is analyzed using finite element analysis software, the problems and interference of the center pendulum and cylinder is found evidently. The data of analysis provides theory basis for the MFPSE’s structural optimization, and is critical to improve the performance of MFPSE.


2018 ◽  
Vol 13 (2) ◽  
pp. 146-155 ◽  
Author(s):  
Zhuoya Yuan ◽  
Pui-Lam Ng ◽  
Darius Bačinskas ◽  
Jinsheng Du

To consider the effect of non-uniform shrinkage of box girder sections on the long-term deformations of continuous rigid frame bridges, and to improve the prediction accuracy of analysis in the design phase, this paper proposes a new simulation technique for use with general-purpose finite element program. The non-uniform shrinkage effect of the box girder is transformed to an equivalent temperature gradient and then applied as external load onto the beam elements in the finite element analysis. Comparative analysis of the difference in deflections between uniform shrinkage and nonuniform shrinkage of the main girder was made for a vehicular bridge in reality using the proposed technique. The results indicate that the maximum deflection of box girder under the action of non-uniform shrinkage is much greater than that under the action of uniform shrinkage. The maximum downward deflection of the bridge girder caused by uniform shrinkage is 5.6 mm at 20 years after completion of bridge deck construction, whereas the maximum downward deflection caused by non-uniform shrinkage is 21.6 mm, which is 3.8 times larger. This study shows that the non-uniform shrinkage effect of the girder sections has a significant impact on the long-term deflection of continuous rigid frame bridge, and it can be accurately simulated by the proposed transformation technique.


2020 ◽  
Vol 41 (1) ◽  
Author(s):  
Apai Benchaphong ◽  
Rattanasak Hongthong ◽  
Sutera Benchanukrom ◽  
Nirut Konkong

The purpose of this research was to study the behavior of cold-formed steel cantilever truss structures. A cantilever truss structure and bolt-moment connection were tested and verified by the 3D-finite element model. The verification results showed a good correlation between an experimental test and finite element analysis. An analytical method for elastic rotational stiffness of bolt-moment connection was proposed. The equation proposed in the analytical method was used to approximate the elastic rotational stiffness of the bolt group connection, and was also applied to the Richard-Abbott model for generating the nonlinear moment-rotation curve which modeled the semi-rigid connection stiffness. The 2D-finite element analysis was applied to study the behavior of the truss connection, caused by semi-rigid connection stiffness which caused a change of force to the truss elements. The results showed that the force in the structural members increased by between 13.62%-74.32% of the axial forces, and the bending moment decreased by between 33.05%-100%. These results strongly suggest that the semi-rigid connection between cold-formed steel cantilever truss structures should be considered in structural analysis to achieve optimum design, acknowledging this as the real behavior of the structure.


Sign in / Sign up

Export Citation Format

Share Document