SHAKING TABLE TESTS ON A COMPLEX HIGH-RISE STRUCTURE WITH TWO TOWERS AND LAPPING TRANSFER COLUMNS

2013 ◽  
Vol 07 (04) ◽  
pp. 1250030 ◽  
Author(s):  
XILIN LU ◽  
BIN WANG ◽  
HUANJUN JIANG ◽  
JIANBAO LI ◽  
WENSHENG LU

In recent decades, structural engineering tends to progress toward more novel high-rise structures under the requirement of realistic functions and architectural aesthetics. The complex high-rise building structure in this study has two towers with lapping transfer columns. The lapping transfer columns, considering aesthetic requirement in elevation, lead to a complex system of vertical force transfer. The large irregularity in elevation, according to Chinese code, needs a detailed study. A 1/15-scaled model of the structure was tested on the shaking table to evaluate its seismic performance. During the tests, the model was subjected to earthquake inputs representing frequent, basic, rare, and extremely rare earthquakes. The results of shaking table test in terms of the global and local responses as well as the dynamic properties are presented. The tests demonstrate that the designed structural system satisfies the pre-defined performance objectives and the lapping transfer columns are capable of coordinating the bi-level stories to resist lateral forces even under extremely strong earthquakes. To better control seismic damages of the building, some suggestions for improving the design of this structure are also put forward at last.

2010 ◽  
Vol 163-167 ◽  
pp. 1281-1285
Author(s):  
Bin Wang ◽  
Huan Jun Jiang ◽  
Jian Bao Li ◽  
Wen Sheng Lu ◽  
Xi Lin Lu

The reinforced concrete (RC) frame-tube structure considered in the study has two towers with lapping transfer columns. The lapping transfer columns, considering aesthetic requirement in elevation, lead to a complex vertical force transfer system. The large irregularity in elevation, according to Chinese code, necessitates a detailed study. A 1/15-scaled model of the high-rise building was tested on a shaking table to evaluate its seismic performance. The model was subjected to earthquake inputs representing frequent, basic, rare, and extremly rare earthquakes. The results of shaking table test in terms of the global and local responses as well as the dynamic properties are presented. The tests demonstrate that the designed structural system satisfies the pre-defined performance objectives and the lapping transfer columns have good seismic peformance. To better control seismic damages of the building, some suggestions for improving the design of this structure are also put forward at last.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Shujin Li ◽  
Cai Wu ◽  
Fan Kong

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.


2009 ◽  
Vol 38 (12) ◽  
pp. 1381-1399 ◽  
Author(s):  
Xiaodong Ji ◽  
Kouichi Kajiwara ◽  
Takuya Nagae ◽  
Ryuta Enokida ◽  
Masayoshi Nakashima

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Xiaojun Li ◽  
Chenning Song ◽  
Guoliang Zhou ◽  
Chao Wei ◽  
Ming Lu

Water tank is one important component of passive containment cooling system (PCS) of nuclear island building. The sloshing frequency of water is much less than structure frequency and large-amplitude sloshing occurs easily when subjected to seismic loadings. Therefore, the sloshing dynamics and fluid-structure interaction (FSI) effect of water tank should be considered when the dynamic response of nuclear island building is analyzed. A 1/16 scaled model was designed and the shaking table test was done, in which the hydrodynamic pressure time histories and attenuation data of wave height were recorded. Then the sloshing frequencies and 1st sloshing damping ratio were recognized. Moreover, modal analysis and time history analysis of numerical model were done by ADINA software. By comparing the sloshing frequencies and hydrodynamic pressures, it is proved that the test method is reasonable and the formulation of potential-based fluid elements (PBFE) can be used to simulate FSI effect of nuclear island building.


2014 ◽  
Vol 11 (4) ◽  
pp. 357-364
Author(s):  
Hui Su ◽  
Jian Wang ◽  
Xinpei Jiang ◽  
Yang Tan

Based on the shake table test on "tie column-ring beam-cast-in-place slab" construction waste recycled brick masonry structure, a 1/3 scaled model of 4 stories is tested to analyze the seismic behavior of the multi-storey masonry structure. The test is conducted with EL-Centro seismic wave, Taft wave and artificial wave to simulate the damages observed and the seismic response under different earthquake levels. On the basis of test results, the seismic performance of the model is good and the overall structure could satisfy seismic fortification requirements in the region of intensity 8. At the same time, there was no obvious difference between this masonry structure and recycled aggregate concrete block masonry structure. The lintel of the door and window damage seriously. The base damages more easily than the superstructure. Masonry structure with construction waste recycled brick can satisfy the requirement of the masonry structure buildings in eight degree of aseismatic design area.


2010 ◽  
Vol 163-167 ◽  
pp. 3977-3980
Author(s):  
Yan Ru Wang ◽  
Mao Yu Zhang ◽  
Jun Wu Dai ◽  
Mai Tong ◽  
George C. Lee

In this paper, we present the analysis on 3D temporal characteristics of a scale model for high-rise structure. Based on the parameter of instantaneous tangential acceleration aT, normal acceleration aN, Euclidean norm of acceleration vector |a|, Euclidean norm of velocity vector |v|, temporal curvature κ, κt, Some interesting relationships and information in depth between them would be obtain.


2011 ◽  
Vol 243-249 ◽  
pp. 1425-1428 ◽  
Author(s):  
Ming Ji Fang

The shaking table test of a full-scale steel frame structure with ALC external wall panels is performed in this paper. Based on the experimental results, the seismic behaviors of ALC external walls and joints are studied, such as the destruction properties of ALC external walls and joints and the effects of external walls on the dynamic properties of steel frame. Several useful conclusions and suggestions are presented in the paper.


2011 ◽  
Vol 250-253 ◽  
pp. 2036-2039
Author(s):  
Wei Qing Fu ◽  
Fei Chen ◽  
Lin Ding

For analyzing reduction vibration effect of high-rise isolated structure with LRB, experimental research on shaking table of isolated structure model on a scale down of 1:16 in two-direction earthquake wave input was conducted. Ratio similitude design of model and earthquake wave input was unified for reflection dynamical characteristic of actual structure in the test. Earthquake responses of isolated top structure acceleration and interblended displacement have been analyzed. The experimental result indicts that isolated top structure acceleration and interblended displacement were reduced. Therefore the isolation technology for high-rise structure also has better reduction vibration effect.


Sign in / Sign up

Export Citation Format

Share Document