A Stochastic Semi-Physical Model of Seismic Ground Motions in Time Domain

2018 ◽  
Vol 12 (03) ◽  
pp. 1850006 ◽  
Author(s):  
Yanqiong Ding ◽  
Yongbo Peng ◽  
Jie Li

A stochastic function model of seismic ground motions is presented in this paper. It is derived from the consideration of physical mechanisms of seismic ground motions. The model includes the randomness inherent in the seismic source, propagation path and local site. For logical selection of the seismic acceleration records, a cluster analysis method is employed. Statistical distributions of the random parameters associated with the proposed model are identified using the selected data. Superposition method of narrow-band wave groups is then adopted to simulate non-stationary seismic ground motions. In order to verify the feasibility of the proposed model, comparative studies of time histories and response spectra of the simulated seismic accelerations against those of the recorded seismic accelerations are carried out. Their probability density functions, moreover, are readily investigated by virtue of the probability density evolution method.

Author(s):  
Xi Zhong Cui ◽  
Han Ping Hong

ABSTRACT A probabilistic model of the time–frequency power spectral density (TFPSD) is presented. The model is developed, based on the time–frequency representation of records from strike-slip earthquakes, in which the time–frequency representation is obtained by applying the S-transform (ST). The model for the TFPSD implicitly considers the amplitude modulation and frequency modulation for the nonstationary ground motions; this differs from the commonly used evolutionary PSD model. Predicting models for the model parameters, based on seismic source and site characteristics, are developed. The use of the model to simulate ground motions for scenario seismic events is illustrated, in which the simulation is carried out using a recently developed model that is based on the discrete orthonormal ST and ST. The illustrative example highlights the simplicity of using the proposed model and the physical meaning of some of the model parameters. A model validation analysis is carried out by comparing the statistics of the pseudospectral acceleration obtained from the simulated records to those obtained using a few ground-motion models available in the literature and considered actual records. The comparison indicates the adequacy of the proposed model.


1993 ◽  
Vol 83 (3) ◽  
pp. 811-829 ◽  
Author(s):  
Hiroo Kanamori ◽  
Paul C. Jennings ◽  
Shri Krishna Singh ◽  
Luciana Astiz

Abstract We performed simulations of ground motions in Mexico City expected for large earthquakes in the Guerrero seismic gap in Mexico. The simulation method uses as empirical Green's functions the accelerograms recorded in Mexico City during four small to moderate earthquakes (8 Feb. 1988, Ms = 5.8; 25 April 1989, Mw = 6.9; 11 May 1990, Mw = 5.5; and 31 May 1990, Mw = 6.0) in the Guerrero gap. Because these events occurred in the Guerrero gap, and have typical thrust mechanisms, the propagation path and site effects can be accurately included in our simulation. Fault rupture patterns derived from the 1985 Michoacan earthquake and source scaling relations appropriate for Mexican subduction zone earthquakes are used. If the Guerrero event is similar to the 1985 Michoacan event, the resulting response spectrum in Mexico City will be approximately twice as large as that of the 1985 Michoacan earthquake at periods longer than 2 sec. At periods shorter than 2 sec, the amplitude will be 2 to 3 times larger than that for the Michoacan earthquake. If the events in the Guerrero seismic gap occur as a sequence of magnitude 7.5 to 7.8 events, as they did in the previous sequence around the turn of the century, the strong motion in Mexico City is estimated to be about half that experienced during the 1985 Michoacan earthquake at periods longer than 2 sec. However, several factors affect this estimate. The magnitude of the possible events has a significant range and, if a rupture sequence is such that it enhances ground-motion amplitude with constructive interference, as occurred during the second half of the Michoacan sequence, some components of the ground motion could be amplified by a factor of 2 to 3. To aid in the interpretation of the simulated motion for purposes of design or hazard assessment, design spectra for the CDAO site in Mexico City are derived from the response spectra of the simulated ground motions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nitin Sharma ◽  
D. Srinagesh ◽  
G. Suresh ◽  
D. Srinivas

Many studies based on the geodetic data and statistical analysis of seismicity have pointed out that sufficient amount of stress accumulated in the Himalayan plate boundary may host a big earthquake. Consequently, high seismic activities and infrastructural developments in the major cities around Himalayan regions are always of major concern. The ground motion parameter estimation plays a vital role in the near real time evaluation of potentially damaged areas and helps in mitigating the seismic hazard. Therefore, keeping in mind the importance of estimation of ground motion parameters, we targeted two moderate-size earthquakes that occurred recently within a gap of 10 months in Uttarakhand region with M > 5.0 on 06/02/2017 and 06/12/2017. The ground motions are simulated by adopting a stochastic modeling technique. The source is assumed as ω−2, a circular point source (Brune’s model). The average value of reported anelastic attenuation from various studies, the quality factor, Qs = 130.4*(f0.996), and stress drop values obtained through iterative procedure are considered for simulations. The stochastic spectra are generated between 0.1 and 10 Hz of frequency range. The site effect is also estimated by using the H/V method in the same frequency range. The synthetic spectra are compared with the observed Fourier amplitude spectra obtained from the recorded waveform data and converted back to the time histories. The stochastic time histories are compared with the observed waveforms and discussed in terms of amplitude (PGA). The simulated and observed response spectra at different structural periods are also discussed. The mismatch between the observed and simulated PGA values along with the GMPE existing for shallow crustal earthquakes is also discussed in the present work.


1987 ◽  
Vol 3 (2) ◽  
pp. 263-287 ◽  
Author(s):  
N. A. Abrahamson ◽  
B. A. Bolt ◽  
R. B. Darragh ◽  
J. Penzien ◽  
Y. B. Tsai

SMART 1 is the first large digital array of strong-motion seismographs specially designed for engineering and seismological studies of the generation and near-field properties of earthquakes. Since the array began operation in September 1980, it has recorded over 3000 accelerogram traces from 48 earthquakes ranging in local magnitude ( ML) from 3.6 to 7.0. Peak ground accelerations have been recorded up to 0.33g and 0.34g on the horizontal and vertical components, respectively. Epicentral distances have ranged from 3 km 200 km from the array center, and focal depths have ranged from shallow to 100 km. The recorded earthquakes had both reverse and strike-slip focal mechanisms associated with the subduction zone and transform faults. These high quality, digital, ground motions provide a varied resource for earthquake engineering research. Earthquake engineering studies of the SMART 1 ground motion data have led to advances in knowledge in several cases: for example, on frequency-dependent incoherency of free-surface ground motions over short distances, on response of linear systems to multiple support excitations, on attenuation of peak ground-motion parameters and response spectra, on site torsion and phasing effects, and on the identification of wave types. Accelerograms from individual strong-motion seismographs do not, in general, provide such information. This review describes the SMART 1 array and the recorded earthquakes with special engineering applications. Also, it tabulates the unfiltered peak array accelerations, displays some of the recorded ground motion time histories, and summarizes the main engineering research that has made use of SMART 1 data.


2013 ◽  
Vol 353-356 ◽  
pp. 1923-1929 ◽  
Author(s):  
Xia Xin Tao ◽  
Hai Ming Liu ◽  
Li Yuan Wang ◽  
Jiang Wei

In order to study the characteristics of ground motions at the two dam sites damaged during the great Wenchuan earthquake in 2008, the motions at two observation stations nearby are synthesized in this paper. 30 finite fault based hybrid source models of the great Wenchuan earthquake with magnitude 8.0 is built. The global and local parameters are both generated from the truncated Normal distribution with mean and standard deviation values estimated by a set of semi-experiential calibration laws and from the regional seismo-tectonics, structure of the crust, and seismicity. A representative source model is then chosen from the corresponding response spectrum mostly close to the average one. The result motions are presented, and the characteristics of the time histories, response spectra and the peak accelerations are quite close to the recordings.


2021 ◽  
pp. 875529302098197
Author(s):  
Jack W Baker ◽  
Sanaz Rezaeian ◽  
Christine A Goulet ◽  
Nicolas Luco ◽  
Ganyu Teng

This manuscript describes a subset of CyberShake numerically simulated ground motions that were selected and vetted for use in engineering response-history analyses. Ground motions were selected that have seismological properties and response spectra representative of conditions in the Los Angeles area, based on disaggregation of seismic hazard. Ground motions were selected from millions of available time series and were reviewed to confirm their suitability for response-history analysis. The processes used to select the time series, the characteristics of the resulting data, and the provided documentation are described in this article. The resulting data and documentation are available electronically.


2020 ◽  
Vol 36 (3) ◽  
pp. 1271-1297
Author(s):  
Kenneth W. Campbell

In this article, I propose a method for estimating the magnitude [Formula: see text] at which subduction megathrust earthquakes are expected to exhibit a break in magnitude scaling of both seismic source dimensions and earthquake ground motions. The methodology is demonstrated by applying it to 79 global subduction zones defined in the literature, including Cascadia. Breakpoint magnitude is estimated from seismogenic interface widths, empirical source scaling relations, and aspect ratios of physically unbounded earthquake ruptures and their uncertainties. The concept stems from the well-established observation that source-dimension and ground motion scaling decreases for shallow continental (primarily strike-slip) earthquakes when rupture exceeds the seismogenic width of the fault. Although a scaling break for megathrust earthquakes is difficult to observe empirically, all of the instrumentally recorded historical [Formula: see text] mega-earthquakes have occurred on subduction zones with [Formula: see text] (8.1–8.9), consistent with an observed break in source scaling relations derived from these same events. The breakpoint magnitudes derived in this study can be used to constrain the magnitude at which the scaling of ground motion is expected to decrease in subduction ground motion prediction equations.


Sign in / Sign up

Export Citation Format

Share Document