A mathematical study of a predator–prey model with disease circulating in the both populations

2015 ◽  
Vol 08 (02) ◽  
pp. 1550015 ◽  
Author(s):  
Krishna Pada Das ◽  
J. Chattopadhyay

Disease in ecological systems plays an important role. In the present investigation we propose and analyze a predator–prey mathematical model in which both species are affected by infectious disease. The parasite is transmitted directly (by contact) within the prey population and indirectly (by consumption of infected prey) within the predator population. We derive biologically feasible and insightful quantities in terms of ecological as well as epidemiological reproduction numbers that allow us to describe the dynamics of the proposed system. Our observations indicate that predator–prey system is stable without disease but high infection rate drive the predator population toward extinction. We also observe that predation of vulnerable infected prey makes the disease to eradicate into the community composition of the model system. Local stability analysis of the interior equilibrium point near the disease-free equilibrium point is worked out. To study the global dynamics of the system, numerical simulations are performed. Our simulation results show that for higher values of the force of infection in the prey population the predator population goes to extinction. Our numerical analysis reveals that predation rates specially on susceptible prey population and recovery of infective predator play crucial role for preventing the extinction of the susceptible predator and disease propagation.

2003 ◽  
Vol 11 (01) ◽  
pp. 19-26 ◽  
Author(s):  
J. CHATTOPADHYAY ◽  
A. MUKHOPADHYAY ◽  
P. K. ROY

The generalized Gause model of predator-prey system is revisited with an introduction of viral infection on prey population. Stability behavior of such modified system is carried out to observe the change of dynamical behavior of the system. To substantiate the analytical results of this generalized susceptible prey, infected prey and predator population, numerical simulations of the model with specific growth and response functions are performed. Our observations suggest that the disease on prey population has a destabilizing or stabilizing effect depending on the level of force of infection and may act as a biological control for the persistence of the species.


Complexity ◽  
2022 ◽  
Vol 2022 ◽  
pp. 1-19
Author(s):  
Y. Tian ◽  
H. M. Li

In presence of predator population, the prey population may significantly change their behavior. Fear for predator population enhances the survival probability of prey population, and it can greatly reduce the reproduction of prey population. In this study, we propose a predator-prey fishery model introducing the cost of fear into prey reproduction with Holling type-II functional response and prey-dependent harvesting and investigate the global dynamics of the proposed model. For the system without harvest, it is shown that the level of fear may alter the stability of the positive equilibrium, and an expression of fear critical level is characterized. For the harvest system, the existence of the semitrivial order-1 periodic solution and positive order- q ( q ≥ 1 ) periodic solution is discussed by the construction of a Poincaré map on the phase set, and the threshold conditions are given, which can not only transform state-dependent harvesting into a cycle one but also provide a possibility to determine the harvest frequency. In addition, to ensure a certain robustness of the adopted harvest policy, the threshold condition for the stability of the order- q periodic solution is given. Meanwhile, to achieve a good economic profit, an optimization problem is formulated and the optimum harvest level is obtained. Mathematical findings have been validated in numerical simulation by MATLAB. Different effects of different harvest levels and different fear levels have been demonstrated by depicting figures in numerical simulation using MATLAB.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 785
Author(s):  
Hasan S. Panigoro ◽  
Agus Suryanto ◽  
Wuryansari Muharini Kusumawinahyu ◽  
Isnani Darti

In this paper, we consider a fractional-order eco-epidemic model based on the Rosenzweig–MacArthur predator–prey model. The model is derived by assuming that the prey may be infected by a disease. In order to take the memory effect into account, we apply two fractional differential operators, namely the Caputo fractional derivative (operator with power-law kernel) and the Atangana–Baleanu fractional derivative in the Caputo (ABC) sense (operator with Mittag–Leffler kernel). We take the same order of the fractional derivative in all equations for both senses to maintain the symmetry aspect. The existence and uniqueness of solutions of both eco-epidemic models (i.e., in the Caputo sense and in ABC sense) are established. Both models have the same equilibrium points, namely the trivial (origin) equilibrium point, the extinction of infected prey and predator point, the infected prey free point, the predator-free point and the co-existence point. For a model in the Caputo sense, we also show the non-negativity and boundedness of solution, perform the local and global stability analysis and establish the conditions for the existence of Hopf bifurcation. It is found that the trivial equilibrium point is a saddle point while other equilibrium points are conditionally asymptotically stable. The numerical simulations show that the solutions of the model in the Caputo sense strongly agree with analytical results. Furthermore, it is indicated numerically that the model in the ABC sense has quite similar dynamics as the model in the Caputo sense. The essential difference between the two models is the convergence rate to reach the stable equilibrium point. When a Hopf bifurcation occurs, the bifurcation points and the diameter of the limit cycles of both models are different. Moreover, we also observe a bistability phenomenon which disappears via Hopf bifurcation.


1995 ◽  
Vol 32 (01) ◽  
pp. 274-277
Author(s):  
John Coffey

A new stochastic predator-prey model is introduced. The predator population X(t) is described by a linear birth-and-death process with birth rate λ 1 X and death rate μ 1 X. The prey population Y(t) is described by a linear birth-and-death process in which the birth rate is λ 2 Y and the death rate is . It is proven that and iff


2020 ◽  
Vol 13 (07) ◽  
pp. 2050065
Author(s):  
Xuebing Zhang ◽  
Guanglan Wang ◽  
Honglan Zhu

In this study, we investigate the optimal control problem for a diffusion eco-epidemiological predator–prey model. We applied two controllers to this model. One is the separation control, which separates the uninfected prey from the infected prey population, and the other is used as a treatment control to decrease the mortality caused by the disease. Then, we propose an optimal problem to minimize the infected prey population at the final time and the cost cause by the controls. To do this, by the operator semigroup theory we prove the existence of the solution to the controlled system. Furthermore, we prove the existence of the optimal controls and obtain the first-order necessary optimality condition for the optimal controls. Finally, some numerical simulations are carried out to support the theoretical results.


2010 ◽  
Vol 18 (02) ◽  
pp. 399-435 ◽  
Author(s):  
KRISHNA PADA DAS ◽  
SAMRAT CHATTERJEE ◽  
J. CHATTOPADHYAY

Eco-epidemiological models are now receiving much attention to the researchers. In the present article we re-visit the model of Holling-Tanner which is recently modified by Haque and Venturino1 with the introduction of disease in prey population. Density dependent disease-induced predator mortality function is an important consideration of such systems. We extend the model of Haque and Venturino1 with density dependent disease-induced predator mortality function. The existence and local stability of the equilibrium points and the conditions for the permanence and impermanence of the system are worked out. The system shows different dynamical behaviour including chaos for different values of the rate of infection. The model considered by Haque and Venturino1 also exhibits chaotic nature but they did not shed any light in this direction. Our analysis reveals that by controlling disease-induced mortality of predator due to ingested infected prey may prevent the occurrence of chaos.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850026 ◽  
Author(s):  
Yunfei Lv ◽  
Yongzhen Pei ◽  
Rong Yuan

We propose and study a predator–prey model with state-dependent delay where the prey population is assumed to have an age structure. The state-dependent delay appears due to the mature condition that the prey must spend an amount of time in the immature stage sufficient to accumulate a threshold amount of food. We perform a qualitative analysis of the solutions, which includes studying positivity and boundedness, existence and local stability of equilibria. For the global dynamics of the system, we discuss an attracting region which is determined by solutions, and the region collapses to the interior equilibrium in the constant delay case.


Author(s):  
Riris Nur Patria Putri ◽  
Windarto Windarto ◽  
Cicik Alfiniyah

Predation is interaction between predator and prey, where predator preys prey. So predators can grow, develop, and reproduce. In order for prey to avoid predators, then prey needs a refuge. In this thesis, a predator-prey model with refuge factor using Holling type III response function which has three populations, i.e. prey population in the refuge, prey population outside the refuge, and predator population. From the model, three equilibrium points were obtained, those are extinction of the three populations which is unstable, while extinction of predator population and coexistence are asymptotic stable under certain conditions. The numerical simulation results show that refuge have an impact the survival of the prey.


2018 ◽  
Vol 5 (1) ◽  
pp. 113-126
Author(s):  
Jai Prakash Tripathi ◽  
Suraj S. Meghwani ◽  
Swati Tyagi ◽  
Syed Abbas

AbstractThis paper discusses a predator-prey model with prey refuge. We investigate the role of prey refuge on the existence and stability of the positive equilibrium. The global asymptotic stability of positive interior equilibrium solution is established using suitable Lyapunov functional, which shows that the prey refuge has no influence on the permanence property of the system. Mathematically, we analyze the effect of increase or decrease of prey reserve on the equilibrium states of prey and predator species. To access the usability of proposed predator-prey model in practical scenarios, we also suggest, the use of Levenberg-Marquardt (LM) method for associated parameter estimation problem. Numerical results demonstrate faithful reconstruction of system dynamics by estimated parameter by LM method. The analytical results found in this paper are illustrated with the help of suitable numerical examples


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sudeshna Mondal ◽  
Guruprasad Samanta

AbstractA field experiment on terrestrial vertebrates observes that direct predation on predator–prey interaction can not only affect the population dynamics but the indirect effect of predator’s fear (felt by prey) through chemical and/or vocal cues may also reduce the reproduction of prey and change their life history. In this work, we have described a predator–prey model with Holling type II functional response incorporating prey refuge. Irrespective of being considering either a constant number of prey being refuged or a proportion of the prey population being refuged, a different growth rate and different carrying capacity for the prey population in the refuge area are considered. The total prey population is divided into two subclasses: (i) prey x in the refuge area and (ii) prey y in the predatory area. We have taken the migration of the prey population from refuge area to predatory area. Also, we have considered a benefit from the antipredation response of the prey population y in presence of cost of fear. Feasible equilibrium points of the proposed system are derived, and the dynamical behavior of the system around equilibria is investigated. Birth rate of prey in predatory region has been regarded as bifurcation parameter to examine the occurrence of Hopf bifurcation in the neighborhood of the interior equilibrium point. Moreover, the conditions for occurrence of transcritical bifurcations have been determined. Further, we have incorporated discrete-type gestational delay on the system to make it more realistic. The dynamical behavior of the delayed system is analyzed. Finally, some numerical simulations are given to verify the analytical results.


Sign in / Sign up

Export Citation Format

Share Document