THERMOELECTRIC PROPERTIES OF p-TYPE SKUTTERUDITES (Pr0.25Nd0.75)xFe3CoSb12 BY LEVITATION MELTING AND SPARK PLASMA SINTERING

2013 ◽  
Vol 06 (05) ◽  
pp. 1340006 ◽  
Author(s):  
JINGSHU XU ◽  
CHENGUANG FU ◽  
JIAN XIE ◽  
XINBING ZHAO ◽  
TIEJUN ZHU

The p-type skutterudite compounds of ( Pr 0.25 Nd 0.75)x Fe 3 CoSb 12 (x = 0.67–0.78) have been successfully synthesized by levitation melting followed by annealing and spark plasma sintering. The thermoelectric properties have been characterized by the measurements of Seebeck coefficient, electrical conductivity and thermal conductivity in the temperature range from 300 K to 850 K. The improvement in the thermoelectric properties was realized due to the reduction in the lattice thermal conductivity when the voids were partially filled by Pr 0.25 Nd 0.75. The maximum ZT value of ~ 0.83 for ( Pr 0.25 Nd 0.75)0.76 Fe 3 CoSb 12 was obtained at 700 K.

2007 ◽  
Vol 336-338 ◽  
pp. 854-856
Author(s):  
Yong Gao Yan ◽  
Xin Feng Tang ◽  
Hai Jun Liu ◽  
Ling Ling Yin ◽  
Qing Jie Zhang

Ag1-xPbmSbTe2+m (m = 6, 10, 18; x = 0, 0.5, 0.75) compounds were prepared by melting-spark plasma sintering (SPS) process. The effects of m and x on the thermoelectric properties of the compounds were investigated. The results indicate that all samples are n-type conduction. For Ag1-xPb18SbTe20 (x = 0, 0.5, 0.75), the electrical conductivity decreases, whereas Seebeck coefficient increases, with increasing Ag concentration. For AgPbmSbTe2+m (m = 6, 10, 18), as m increases, the Seebeck coefficient slightly decreases and the electrical conductivity increases first, with a maximum at m =10, and then decreases. The thermal conductivity increases with increasing m.


Author(s):  
Yoshiki Takagiwa ◽  
Takahiko Kamimura ◽  
Sizuka Hosoi ◽  
Junpei Tamura Okada ◽  
Kaoru Kimura

AbstractWe report the thermoelectric properties of poly-grain Al–Pd–Re icosahedral quasicrystals and discuss an effect of improvement of their microstructure. The improvement of microstructure by using Spark Plasma Sintering (SPS) method resulted into a large increase of the electrical conductivity but less increase of the thermal conductivity. The relative density dramatically increased up to more than 90% by SPS. On the other hand, the microstructure itself does not have critical influence on the Seebeck coefficient, which is found to be strongly correlated with


2014 ◽  
Vol 2 (38) ◽  
pp. 15829-15835 ◽  
Author(s):  
Kriti Tyagi ◽  
Bhasker Gahtori ◽  
Sivaiah Bathula ◽  
A. K. Srivastava ◽  
A. K. Shukla ◽  
...  

Intrinsically ultra-low thermal conductivity and electrical transport in single-phase Cu2SbSe3 synthesized employing a solid state reaction and spark plasma sintering.


2012 ◽  
Vol 512-515 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yu Kun Xiao ◽  
Zhi Xiang Li ◽  
Jun Jiang ◽  
Sheng Hui Yang ◽  
Ting Zhang ◽  
...  

P-type BiSbTe/RuO2 composite was fabricated using a combined process of melting and spark plasma sintering. The XRD patterns showed that RuO2 reacted with the matrix for the RuO2 content of 1.0 wt% and 4.0 wt% samples. The measured thermoelectric properties showed that the highest electrical conductivity was obtained for the sample with 2.0 wt% RuO2. The power factor (α2σ/κ) decreased with the increase of RuO2 below 450 K. The lattice thermal conductivity was lower than that of BiSbTe over the whole temperature range for BiSbTe/2.0 wt% RuO2.


2009 ◽  
Vol 66 ◽  
pp. 17-20 ◽  
Author(s):  
Mei Jun Yang ◽  
Wei Jun Luo ◽  
Qiang Shen ◽  
Hong Yi Jiang ◽  
Lian Meng Zhang

Nanocomposites and heavy doping both are regarded as effective way to improve materials’ thermoelectric properties. 0.7at% Bi-doped Mg2Si nanocomposites were prepared by spark plasma sintering. Results of thermoelectric properties tests show that the doping of Bi atom effectively improves the electrical conductivity of Mg2Si,and the nanocomposite structures are helpful to reduce thermal conductivity and increase Seebeck coefficient, hence improving the thermoelectric performance. A maximum dimensionless figure of merit of 0.8 is obtained for the Bi-doped Mg2Si nanocomposite with 50 wt % nanopowder inclusions at 823K, about 63% higher than that of Bi-doped Mg2Si sample without nanopowder inclusions and 119% higher than that of microsized Mg2Si sample without Bi-doped, respectively.


2021 ◽  
Author(s):  
Srikanth Mandava ◽  
Neeta Bisht ◽  
Anjali Saini ◽  
Mukesh Kumar Bairwa ◽  
Khasimsaheb Bayikadi ◽  
...  

Abstract A novel SnSe nanoake system is explored for its thermoelectric properties from both experiments and ab initio study. The nanoakes of the low temperature phase of SnSe (Pnma) are synthesized employing a fast and efficient refluxing method followed by spark plasma sintering at two different temperatures. We report an enhanced power factor (12 W/mK2 - 67 W/mK2 in the temperature range 300 K-600 K) in our p-type samples. We find that the prime reason for a high PF in our samples is a significantly improved electrical conductivity (1050 S/m - 2180 S/m in the temperature range 300 K-600 K). From our ab initio band structure calculations accompanied with the models of temperature and surface dependent carrier scattering mechanisms, we reveal that an enhanced electrical conductivity is due to the reduced carrier-phonon scattering in our samples. The trans- port calculations are performed using the Boltzmann transport equation within relaxation time approximation. With our combined experimental and theoretical study, we demonstrate that the thermoelectric properties of p-type Pnma-SnSe could be improved by tuning the carrier scattering mechanisms with a control over the spark plasma sintering temperature.


2006 ◽  
Vol 510-511 ◽  
pp. 1122-1125
Author(s):  
Won Seung Cho ◽  
Dong Choul Cho ◽  
Cheol Ho Lim ◽  
C.H. Lee ◽  
Woon Suk Hwang ◽  
...  

The microstructure and thermoelectrical properties of the 4wt% Te doped p-type Bi0.5Sb1.5Te3 compounds, fabricated by using spark plasma sintering in the temperature ranging from 250°C to 350°C, were characterized. The density of the sintered compounds was increased to 99.2% of theoretical density by carrying out the consolidation at 350oC for 2 min. The Seebeck coefficient, thermal conductivity and electrical resistivity were dependent on hydrogen reduction process and sintering temperature. The Seebeck coefficient increased with reduction process while the electrical resisitivity significantly decreased. Also, the electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that the carrier density and mobility vary with reduction process and sintering temperature. The highest figure of merit of 3.5×10-3/K was obtained for the compounds spark plasma sintered at 350°C for 2 min by using the hydrogen-reduced powders.


2021 ◽  
pp. 2150089
Author(s):  
THAMMANOON KAPANYA ◽  
BINBIN JIANG ◽  
JIAQING HE ◽  
YANG QIU ◽  
CHANCHANA THANACHAYANONT ◽  
...  

The efficient strategies to minimize thermal conductivity in skutterudite materials are creating point defects along with nanosized grains. In this report, Sn and Se co-doped CoSb3 materials were synthesized through mixed-ball milling and spark plasma sintering techniques to utilize this strategy. Their phases, microstructure and thermoelectric properties were investigated under the content variation of Sn and Se in CoSb3 samples. The experimental results revealed that the Sn and Se were substituted at Sb sites in CoSb3 crystal structure and grain sizes were restricted to a hundred nanometer. The lattice thermal conductivity was reduced to 2.4[Formula: see text]W/mK at 298K. Interestingly, increasing Sn and Se doped content could further minimize the lattice thermal conductivity. The lowest value at room temperature is 1.79[Formula: see text]W/mK for CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text] which was dramatically lower than pure CoSb3. Moreover, the increment of Sn and Se content also increased the electrical conductivity of doped samples, while the negative Seebeck coefficient sign tended to decrease. As expected, low electrical conductivity and substantial reduction in the Seebeck coefficient of doped samples at high measurement temperature, resulting in low power factor and low ZT values. It was clearly seen that the highest power factor of 880[Formula: see text][Formula: see text]W/mK2 was found at 516[Formula: see text]K in CoSb[Formula: see text]Sn[Formula: see text]Se[Formula: see text]. Furthermore, it also dominated the highest ZT value of 0.29 at 565 K, compared to the other Sn and Se co-doped samples. From these results, ball milling under dry conditions followed by wet conditions not only allowed a longer milling process but also generated a small fraction of pore which was a part of the reduction in thermal conductivity. Especially, the advantage of the existence of Sn and Se point defects and nanosized grains from this work will be escalated when it was applied to prepare materials that have high power factor values.


2006 ◽  
Vol 415 (1-2) ◽  
pp. 251-256 ◽  
Author(s):  
Satoru Furuyama ◽  
Tsutomu Iida ◽  
Shinsuke Matsui ◽  
Masayasu Akasaka ◽  
Keishi Nishio ◽  
...  

2001 ◽  
Vol 16 (12) ◽  
pp. 3343-3346 ◽  
Author(s):  
X. F. Tang ◽  
L. M. Zhang ◽  
R. Z. Yuan ◽  
L. D. Chen ◽  
T. Goto ◽  
...  

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.


Sign in / Sign up

Export Citation Format

Share Document