Three-dimensional networked Na3V2(PO4)3/C composite as high-performance cathode for aqueous zinc-ion battery

2021 ◽  
Vol 14 (02) ◽  
pp. 2150011
Author(s):  
Xiaoyong Fan ◽  
Ruibo Sun ◽  
Jiaxing Han ◽  
Yan Wu ◽  
Lei Gou ◽  
...  

Na3V2(PO[Formula: see text] (NVP) as one typical Na[Formula: see text] super ionic conductor (NASICON) is recognized as an ideal cathode material for ZIBs owing to its promising structural stability that facilitates long cycle, rich vacancies and channels facilitate storing metal ions, high operating potentials to ensure high energy density. However, it still faces poor cyclability and high-rate capacity. Here, three-dimensional networked Na3V2(PO[Formula: see text]/C composite is synthesized by a microemulsion strategy with cetyltrimethyl ammonium bromide (CTAB) as the soft template, and the effect of aging temperature of microemulsion on their morphology and electrochemical performance is investigated. The Na3V2(PO[Formula: see text]/C composite derived from the precursor reacted at 70[Formula: see text]C shows micrometer-size particles assembled by three-dimensional networked nanoplates, facilitating for ions transport and delivers the best electrochemical performance. It displays a high first capacity of 102.2 mAh g[Formula: see text] with 42.3 mAh g[Formula: see text] remained after 5000 stable cycles (capacity retention of 41.4%) at 5 C, a high capacity of 83.2 mAh g[Formula: see text] even the current density is as high as 20 C, which is better than most of the reports.

2021 ◽  
Author(s):  
yajun JI ◽  
Fei Chen ◽  
Shufen Tan ◽  
Fuyong Ren

Abstract Transition metal oxides are generally designed as hybrid nanostructures with high performance for supercapacitors by enjoying the advantages of various electroactive materials. In this paper, a convenient and efficient route had been proposed to prepare hierarchical coral-like MnCo2O4.5@Co-Ni LDH composites on Ni foam, in which MnCo2O4.5 nanowires were enlaced with ultrathin Co-Ni layered double hydroxides nanosheets to achieve high capacity electrodes for supercapacitors. Due to the synergistic effect of shell Co-Ni LDH and core MnCo2O4.5, the outstanding electrochemical performance in three-electrode configuration was triggered (high area capacitance of 5.08 F/cm2 at 3 mA/cm2 and excellent rate capability of maintaining 61.69 % at 20 mA/cm2), which is superior to those of MnCo2O4.5, Co-Ni LDH and other metal oxides based composites reported. Meanwhile, the as-prepared hierarchical MnCo2O4.5@Co-Ni LDH electrode delivered improved electrical conductivity than that of pristine MnCo2O4.5. Furthermore, the as-constructed asymmetric supercapacitor using MnCo2O4.5@Co-Ni LDH as positive and activated carbon as negative electrode presented a rather high energy density of 220 μWh/cm2 at 2400 μW/cm2 and extraordinary cycling durability with the 100.0 % capacitance retention over 8000 cycles at 20 mA/cm2, demonstrating the best electrochemical performance compared to other asymmetric supercapacitors using metal oxides based composites as positive electrode material. It can be expected that the obtained MnCo2O4.5@Co-Ni LDH could be used as the high performance and cost-effective electrode in supercapacitors.


2021 ◽  
Vol 22 (20) ◽  
pp. 11041
Author(s):  
Yajing Yan ◽  
Yanxu Chen ◽  
Yongyan Li ◽  
Xiaoyu Wu ◽  
Chao Jin ◽  
...  

By virtue of the high theoretical capacity of Si, Si-related materials have been developed as promising anode candidates for high-energy-density batteries. During repeated charge/discharge cycling, however, severe volumetric variation induces the pulverization and peeling of active components, causing rapid capacity decay and even development stagnation in high-capacity batteries. In this study, the Si/Fe2O3-anchored rGO framework was prepared by introducing ball milling into a melt spinning and dealloying process. As the Li-ion battery (LIB) anode, it presents a high reversible capacity of 1744.5 mAh g−1 at 200 mA g−1 after 200 cycles and 889.4 mAh g−1 at 5 A g−1 after 500 cycles. The outstanding electrochemical performance is due to the three-dimensional cross-linked porous framework with a high specific surface area, which is helpful to the transmission of ions and electrons. Moreover, with the cooperation of rGO, the volume expansion of Si is effectively alleviated, thus improving cycling stability. The work provides insights for the design and preparation of Si-based materials for high-performance LIB applications.


2019 ◽  
Vol 11 (1) ◽  
Author(s):  
Lu Wang ◽  
Junwei Han ◽  
Debin Kong ◽  
Ying Tao ◽  
Quan-Hong Yang

Abstract Lithium-ion batteries (LIBs), which are high-energy-density and low-safety-risk secondary batteries, are underpinned to the rise in electrochemical energy storage devices that satisfy the urgent demands of the global energy storage market. With the aim of achieving high energy density and fast-charging performance, the exploitation of simple and low-cost approaches for the production of high capacity, high density, high mass loading, and kinetically ion-accessible electrodes that maximize charge storage and transport in LIBs, is a critical need. Toward the construction of high-performance electrodes, carbons are promisingly used in the enhanced roles of active materials, electrochemical reaction frameworks for high-capacity noncarbons, and lightweight current collectors. Here, we review recent advances in the carbon engineering of electrodes for excellent electrochemical performance and structural stability, which is enabled by assembled carbon architectures that guarantee sufficient charge delivery and volume fluctuation buffering inside the electrode during cycling. Some specific feasible assembly methods, synergism between structural design components of carbon assemblies, and electrochemical performance enhancement are highlighted. The precise design of carbon cages by the assembly of graphene units is potentially useful for the controlled preparation of high-capacity carbon-caged noncarbon anodes with volumetric capacities over 2100 mAh cm−3. Finally, insights are given on the prospects and challenges for designing carbon architectures for practical LIBs that simultaneously provide high energy densities (both gravimetric and volumetric) and high rate performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 155
Author(s):  
Bin Zhang ◽  
Ping Liu ◽  
Zijiong Li ◽  
Xiaohui Song

Designing a novel, efficient, and cost-effective nanostructure with the advantage of robust morphology and outstanding conductivity is highly promising for the electrode materials of high-performance electrochemical storage device. In this paper, a series of honeycombed perovskite-type Sr-doped LaNiO3 nanosheets with abundant porous structure were successfully synthesized by accurately controlling the Sr-doped content. The study showed that the optimal LSNO-0.4 (La0.6Sr0.4NiO3-δ) electrode exhibited excellent electrochemical performance, which showed a high capacity of 115.88 mAh g−1 at 0.6 A g−1. Furthermore, a hybrid supercapacitor device (LSNO//AC) based on LSNO-0.4 composites and activated carbon (AC) showed a high energy density of 17.94 W h kg−1, a high power density of 1600 W kg−1, and an outstanding long-term stability with 104.4% capacity retention after 16,000 cycles, showing an excellent electrochemical performance and a promising application as an electrode for energy storage.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Haisheng Han ◽  
Yanli Song ◽  
Yongguang Zhang ◽  
Gulnur Kalimuldina ◽  
Zhumabay Bakenov

AbstractIn recent years, the development of lithium-ion batteries (LIBs) with high energy density has become one of the important research directions to fulfill the needs of electric vehicles and smart grid technologies. Nowadays, traditional LIBs have reached their limits in terms of capacity, cycle life, and stability, necessitating their further improvement and development of alternative materials with remarkably enhanced properties. A nitrogen-containing carbon nanotube (N-CNT) host for bimetallic sulfide (NiCo2S4) is proposed in this study as an anode with attractive electrochemical performance for LIBs. The prepared NiCo2S4/N-CNT nanocomposite exhibited improved cycling stability, rate performance, and an excellent reversible capacity of 623.0 mAh g–1 after 100 cycles at 0.1 A g–1 and maintained a high capacity and cycling stability at 0.5 A g–1. The excellent electrochemical performance of the composite can be attributed to the unique porous structure, which can effectively enhance the diffusivity of Li ions while mitigating the volume expansion during the charge–discharge processes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Shouxiang Ding ◽  
Mingzheng Zhang ◽  
Runzhi Qin ◽  
Jianjun Fang ◽  
Hengyu Ren ◽  
...  

AbstractRecent years have witnessed a booming interest in grid-scale electrochemical energy storage, where much attention has been paid to the aqueous zinc ion batteries (AZIBs). Among various cathode materials for AZIBs, manganese oxides have risen to prominence due to their high energy density and low cost. However, sluggish reaction kinetics and poor cycling stability dictate against their practical application. Herein, we demonstrate the combined use of defect engineering and interfacial optimization that can simultaneously promote rate capability and cycling stability of MnO2 cathodes. β-MnO2 with abundant oxygen vacancies (VO) and graphene oxide (GO) wrapping is synthesized, in which VO in the bulk accelerate the charge/discharge kinetics while GO on the surfaces inhibits the Mn dissolution. This electrode shows a sustained reversible capacity of ~ 129.6 mAh g−1 even after 2000 cycles at a current rate of 4C, outperforming the state-of-the-art MnO2-based cathodes. The superior performance can be rationalized by the direct interaction between surface VO and the GO coating layer, as well as the regulation of structural evolution of β-MnO2 during cycling. The combinatorial design scheme in this work offers a practical pathway for obtaining high-rate and long-life cathodes for AZIBs.


Nanoscale ◽  
2021 ◽  
Author(s):  
Chenxi Gao ◽  
Jiawei Wang ◽  
Yuan Huang ◽  
Zixuan Li ◽  
Jiyan Zhang ◽  
...  

Zinc-ion batteries (ZIBs) have attracted significant attention owing to their high safety, high energy density, and low cost. ZIBs have been studied as a potential energy device for portable and...


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1143 ◽  
Author(s):  
Anil Yedluri ◽  
Tarugu Anitha ◽  
Hee-Je Kim

Hierarchical NiMoO4/NiMoO4 nanoflowers were fabricated on highly conductive flexible nickel foam (NF) substrates using a facile hydrothermal method to achieve rapid charge-discharge ability, high energy density, long cycling lifespan, and higher flexibility for high-performance supercapacitor electrode materials. The synthesized composite electrode material, NF/NiMoO4/NiMoO4 with a nanoball-like NF/NiMoO4 structure on a NiMoO4 surface over a NF substrate, formed a three-dimensional interconnected porous network for high-performance electrodes. The novel NF/NiMoO4/NiMoO4 nanoflowers not only enhanced the large surface area and increased the electrochemical activity, but also provided an enhanced rapid ion diffusion path and reduced the charge transfer resistance of the entire electrode effectively. The NF/NiMoO4/NiMoO4 composite exhibited significantly improved supercapacitor performance in terms of a sustained cycling life, high specific capacitance, rapid charge-discharge capability, high energy density, and good rate capability. Electrochemical analysis of the NF/NiMoO4/NiMoO4 nanoflowers fabricated on the NF substrate revealed ultra-high electrochemical performance with a high specific capacitance of 2121 F g−1 at 12 mA g−1 in a 3 M KOH electrolyte and 98.7% capacitance retention after 3000 cycles at 14 mA g−1. This performance was superior to the NF/NiMoO4 nanoball electrode (1672 F g−1 at 12 mA g−1 and capacitance retention 93.4% cycles). Most importantly, the SC (NF/NiMoO4/NiMoO4) device displayed a maximum energy density of 47.13 W h kg−1, which was significantly higher than that of NF/NiMoO4 (37.1 W h kg−1). Overall, the NF/NiMoO4/NiMoO4 composite is a suitable material for supercapacitor applications.


2018 ◽  
Vol 6 (4) ◽  
pp. 1802-1808 ◽  
Author(s):  
Ke Li ◽  
Yanshan Huang ◽  
Jingjing Liu ◽  
Mansoor Sarfraz ◽  
Phillips O. Agboola ◽  
...  

Three-dimensional graphene frameworks enable the development of stretchable asymmetric supercapacitors with a record high energy density of 77.8 W h kg−1, and also excellent stretchability and superior cycling stability.


2016 ◽  
Vol 4 (43) ◽  
pp. 16879-16885 ◽  
Author(s):  
Ya Wang ◽  
Hui Dou ◽  
Bing Ding ◽  
Jie Wang ◽  
Zhi Chang ◽  
...  

A symmetric capacitor based on facilely synthesized three-dimensional oriented porous carbon nanosheets delivers high energy density.


Sign in / Sign up

Export Citation Format

Share Document