A malaria model with Caputo–Fabrizio and Atangana–Baleanu derivatives

Author(s):  
Hamadjam Abboubakar ◽  
Pushpendra Kumar ◽  
Norodin A. Rangaig ◽  
Sachin Kumar

In this paper, we study two fractional models in the Caputo–Fabrizio sense and Atangana–Baleanu sense, in which the effects of malaria infection on mosquito biting behavior and attractiveness of humans are considered. Using Lyapunov theory, we prove the global asymptotic stability of the unique endemic equilibrium of the integer-order model, and the fractional models, whenever the basic reproduction number [Formula: see text] is greater than one. By using fixed point theory, we prove existence, and conditions of the uniqueness of solutions, as well as the stability and convergence of numerical schemes. Numerical simulations for both models, using fractional Euler method and Adams–Bashforth method, respectively, are provided to confirm the effectiveness of used approximation methods for different values of the fractional-order [Formula: see text].

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi

Abstract We study the SEIR epidemic model for the spread of AH1N1 influenza using the Caputo–Fabrizio fractional-order derivative. The reproduction number of system and equilibrium points are calculated, and the stability of the disease-free equilibrium point is investigated. We prove the existence of solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. In the numerical section, we present a simulation to examine the system, in which we calculate equilibrium points of the system and examine the behavior of the resulting functions at the equilibrium points. By calculating the results of the model for different fractional order, we examine the effect of the derivative order on the behavior of the resulting functions and obtained numerical values. We also calculate the results of the integer-order model and examine their differences with the results of the fractional-order model.


Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2003
Author(s):  
Dipankar Das ◽  
Lakshmi Narayan Mishra ◽  
Vishnu Narayan Mishra ◽  
Hamurabi Gamboa Rosales ◽  
Arvind Dhaka ◽  
...  

This article introduces a new type of C*-algebra valued modular G-metric spaces that is more general than both C*-algebra valued modular metric spaces and modular G-metric spaces. Some properties are also discussed with examples. A few common fixed point results in C*-algebra valued modular G-metric spaces are discussed using the “C*-class function”, along with some suitable examples to validate the results. Ulam–Hyers stability is used to check the stability of some fixed point results. As applications, the existence and uniqueness of solutions for a particular problem in dynamical programming and a system of nonlinear integral equations are provided.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi ◽  
Amin Jajarmi

Abstract We present a new mathematical model for the transmission of Zika virus between humans as well as between humans and mosquitoes. In this way, we use the fractional-order Caputo derivative. The region of the feasibility of system and equilibrium points are calculated, and the stability of equilibrium point is investigated. We prove the existence of a unique solution for the model by using the fixed point theory. By using the fractional Euler method, we get an approximate solution to the model. Numerical results are presented to investigate the effect of fractional derivative on the behavior of functions and also to compare the integer-order derivative and fractional-order derivative results.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shahram Rezapour ◽  
Hakimeh Mohammadi ◽  
Mohammad Esmael Samei

Abstract We provide a SEIR epidemic model for the spread of COVID-19 using the Caputo fractional derivative. The feasibility region of the system and equilibrium points are calculated and the stability of the equilibrium points is investigated. We prove the existence of a unique solution for the model by using fixed point theory. Using the fractional Euler method, we get an approximate solution to the model. To predict the transmission of COVID-19 in Iran and in the world, we provide a numerical simulation based on real data.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Alberto Cabada ◽  
Om Kalthoum Wanassi

Abstract This paper is devoted to study the existence and uniqueness of solutions of a one parameter family of nonlinear Riemann–Liouville fractional differential equations with mixed boundary value conditions. An exhaustive study of the sign of the related Green’s function is carried out. Under suitable assumptions on the asymptotic behavior of the nonlinear part of the equation at zero and at infinity, and by application of the fixed point theory of compact operators defined in suitable cones, it is proved that there exists at least one solution of the considered problem. Moreover, the method of lower and upper solutions is developed and the existence of solutions is deduced by a combination of both techniques. In particular cases, the Banach contraction principle is used to ensure the uniqueness of solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


Fractals ◽  
2021 ◽  
Author(s):  
HUSSAM ALRABAIAH ◽  
MATI UR RAHMAN ◽  
IBRAHIM MAHARIQ ◽  
SAMIA BUSHNAQ ◽  
MUHAMMAD ARFAN

In this paper, we consider a fractional mathematical model describing the co-infection of HBV and HCV under the non-singular Mittag-Leffler derivative. We also investigate the qualitative analysis for at least one solution and a unique solution by applying the approach fixed point theory. For an approximate solution, the technique of the iterative fractional order Adams–Bashforth scheme has been implemented. The simulation for the proposed scheme has been drawn at various fractional order values lying between (0,1) and integer-order of 1 via using Matlab. All the compartments have shown convergence and stability with time. A detailed comparative result has been given by the different fractional orders, which showed that the stability was achieved more rapidly at low orders.


Symmetry ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 672 ◽  
Author(s):  
Mouffak Benchohra ◽  
Soufyane Bouriah ◽  
Juan J. Nieto

We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer–Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii’s fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
D. Miheţ ◽  
R. Saadati ◽  
S. Vaezpour

AbstractWe establish a stability result concerning the functional equation: $\sum\limits_{i = 1}^m {f\left( {mx_i + \sum\limits_{j = 1,j \ne i}^m {x_j } } \right) + f\left( {\sum\limits_{i = 1}^m {x_i } } \right) = 2f\left( {\sum\limits_{i = 1}^m {mx_i } } \right)} $ in a large class of complete probabilistic normed spaces, via fixed point theory.


Sign in / Sign up

Export Citation Format

Share Document