scholarly journals Assessment of dielectric strength and partial discharges patterns in nanocomposites insulation of single-core power cables

2021 ◽  
Vol 11 (04) ◽  
pp. 2150022
Author(s):  
Ahmed Thabet ◽  
M. Fouad

Nanoparticles succeeded to enhance the dielectric properties of industrial insulation but the presence of voids inside the power cable insulation still leads to formation high electrical stress inside power cable insulation material and collapse. In this paper, the dielectric strength of new design nanocomposites has been deduced as experimental work done to clarify the benefit of filling nanoparticles with different patterns inside dielectrics. Also, it has been studied the effect of electrical stress distribution in presence of air, water and copper impurities with different shapes (cylinder, sphere and ellipse) inside insulation of single core. In simulation model, it has been used finite element method (FEM) for estimating the electrostatic field distribution in power cable insulation. It has been applied new strategies of nanotechnology techniques for designing innovative polyvinyl chloride insulation materials by using nanocomposites and multi-nanocomposites. Finally, this research succeeded to remedy different partial discharges (PD) patterns according to using certain types and concentrations of nanoparticles.

Author(s):  
Patrick Janus ◽  
Hans Edin ◽  
Kruphalan Tamil Selva

<p>Partial Discharges (PD) on high-voltage alternating current (HVAC) cables insulated with cross-linked polyethylene (XLPE) has a low occurrence, but consequences are usually severe since PD ultimately results in cable failures. Up until now the only efficient way to monitor HVAC cables for PD has been to install large coupling devices which are able to measure PDs directly from the power cables in order to verify if they are fault-free. These installations, usually of a temporary nature, are troublesome for several reasons like safety issues, measurement uncertainty, labor intensity etc. <br />For the purpose to ultimately create a system that is able to be utilized for PD Detection by means of gas analysis, which is easily applicable in on site, on-line conditions, initial experiments were performed in order to investigate basic material properties of XLPE and to investigate the performance of tin oxide (SnO2) sensors for such an application. For this purpose a specialized test cell was developed in order to be able to investigate different conditions which can be expected in a cable insulation system.<br />It was found from the experiments that surface discharges are detectable by means of gas analysis and that these gases penetrate an XLPE sample. It was also demonstrated that the SnO2 based sensor system displays a good selectivity to the gases emitted by PD and remain inert towards other gases emitted from XLPE samples.</p>


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Aishwarya Sriraman

There are over 600 miles of power cable installed in a typical nuclear power plant. Degradation due to thermal and radiation damage of cable insulation has been identified as one of the key factors that contribute to the loss of performance and ultimate failure of the cable. A critical aspect of cable health monitoring is to understand the nature of degradation and develop aging models to predict the service lifetime of the insulation. In this work, it is proposed to evaluate the effectiveness of four different modeling approaches to evaluate the aging behavior and remaining useful life of industrial-grade ethylene propylene rubber (EPR), a cable insulation material used extensively in nuclear power plants. A comparative study of the ability of these prognostic models to reliably predict the service lifetime of EPR while accounting for the presence of various inclusions and impurities in the production grade material will be conducted, to test their industrial applicability and evaluate their relative performance


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dongxin He ◽  
Tao Zhang ◽  
Meng Ma ◽  
Wenjie Gong ◽  
Wei Wang ◽  
...  

The stabilization of cross-linked polyethylene (XLPE) cables is crucial to the safe working of power systems. In order to investigate the aging characteristics of cable insulation in the process of operation, 10 kV XLPE cables were electrically-thermally aged at an AC voltage of 26.1 kV and three temperatures: 103°C, 114°C, and 135°C. Cable samples at five aging stages were cut into slices and tested to determine their mechanical, physicochemical properties and dielectric strength. The changes in these properties were analyzed in terms of aging time. The mechanical strength and oxidation induction time have the same changing trend of decrease, because the chemical bonds of the cable insulation material are fractured when the XLPE cable is aged. The AC space charge presented a trend of gradual accumulation with aging time. The breakdown field strength after AC voltage application decreases monotonically with aging time, which could be a characteristic index to evaluate the degradation degree of the cable insulation. This research contributes to the comprehension of degradation mechanism and discovery of aging assessment criteria, which is of great significance in assessments of insulation properties and fault detection on power cables.


1981 ◽  
Vol 54 (1) ◽  
pp. 51-60
Author(s):  
Jon W. Martin

Abstract A downhole simulator can be used to test oil well power cable, providing results more quickly and economically than can be obtained from field testing. Electrical properties of the cable can be monitored durng the test. Thermal limits can be established. Field degradation mechanisms can be reproduced. TRW uses the facility to evaluate oil well cable designs and to test new cable insulation and protection materials. From this experience, submergible cables have been improved to meet the most severe downhole conditions being encountered throughout the world.


2021 ◽  
Vol 261 ◽  
pp. 02053
Author(s):  
Jin Ming Guo ◽  
Fei Feng Wang

In order to further study the effect of different degree of acidity and alkalinity on cable insulation aging, the aging condition of cable insulation was compared and analyzed under different pH values. The samples of cable insulation material slice and short cable were carried out the accelerated aging test, which were placed in the conditions of different pH values. And then the test results of micro morphology and electrical properties between the different samples were compared and analyzed after aging. According to the test results in this paper, the micro morphology of the cable insulation material slice would change differently under the aging conditions of different acidity and alkalinity, which indicated that the degree of oxidation degradation of insulation material aging was different from the different acidity and alkalinity conditions. In addition, both acid or alkaline environment would accelerate the aging of cable insulation and reduce the service life of cable, while strong acid and strong alkaline environment are more conducive to the formation of interpenetrating water tree in cable insulation material and cause the operation accident of power cable. Furthermore, the test results of electrical properties of short cable samples after aging showed that the aging degree of short cable samples was more serious in alkaline environment, and the decline of electrical properties was faster.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 24 ◽  
Author(s):  
Ilona Pleşa ◽  
Petru Noţingher ◽  
Cristina Stancu ◽  
Frank Wiesbrock ◽  
Sandra Schlögl

This review represents a comprehensive study of nanocomposites for power cables insulations based on thermoplastic polymers such as polyethylene congeners like LDPE, HDPE and XLPE, which is complemented by original results. Particular focus lies on the structure-property relationships of nanocomposites and the materials’ design with the corresponding electrical properties. The critical factors, which contribute to the degradation or improvement of the electrical performance of such cable insulations, are discussed in detail; in particular, properties such as electrical conductivity, relative permittivity, dielectric losses, partial discharges, space charge, electrical and water tree resistance behavior and electric breakdown of such nanocomposites based on thermoplastic polymers are described and referred to the composites’ structures. This review is motivated by the fact that the development of polymer nanocomposites for power cables insulation is based on understanding more closely the aging mechanisms and the behavior of nanocomposites under operating stresses.


2014 ◽  
Vol 960-961 ◽  
pp. 881-884
Author(s):  
Xiao Guang Xi ◽  
Yu Yan Man ◽  
Chi Zhang ◽  
Ming Lei Wu ◽  
Yan Wei Dong ◽  
...  

In this article, a portable XLPE cable insulation detection device is introduced. Such a device utilizes electromagnetic coupling, UHF electromagnetic wave and acoustic emission to detect partial discharge signals in power cables. By analyzing the partial discharge signals and cable temperatures, the insulation status of XLPE power cables is judged.


Sign in / Sign up

Export Citation Format

Share Document