scholarly journals BBO-Based State Optimization for PMSM Machines

Author(s):  
Hanane Lakehal ◽  
Mouna Ghanai ◽  
Kheireddine Chafaa

In this investigation, state vector estimation of the Permanent Magnet Synchronous machine (PMSM) using the nonlinear Kalman estimator (Extended Kalman Filter) is considered. The considered states are the speed of the rotor, its angular position, the torque of the load and the resistance of the stator. Since the extended Kalman filter contains some free parameters, it will be necessary to optimize them in order to obtain a better efficiency. The free parameters of EKF are the covariance matrices of state noise and measurement noise. These later will be auto adjusted by a new metaheuristic optimization technique called Biogeographical-based optimization (BBO). As far as we know, BBO–EKF optimization for PMSM state was not treated in the literature. The suggested estimation tuning approach is demonstrated using a computer simulation of a PMSM. Simulated experimentations show the robustness and effectiveness of the proposed scheme. In addition, a detailed comparative study with conventional methods like Particle Swarm Optimization and Genetic Algorithms will be given.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3809 ◽  
Author(s):  
Yushi Hao ◽  
Aigong Xu ◽  
Xin Sui ◽  
Yulei Wang

Recently, the integration of an inertial navigation system (INS) and the Global Positioning System (GPS) with a two-antenna GPS receiver has been suggested to improve the stability and accuracy in harsh environments. As is well known, the statistics of state process noise and measurement noise are critical factors to avoid numerical problems and obtain stable and accurate estimates. In this paper, a modified extended Kalman filter (EKF) is proposed by properly adapting the statistics of state process and observation noises through the innovation-based adaptive estimation (IAE) method. The impact of innovation perturbation produced by measurement outliers is found to account for positive feedback and numerical issues. Measurement noise covariance is updated based on a remodification algorithm according to measurement reliability specifications. An experimental field test was performed to demonstrate the robustness of the proposed state estimation method against dynamic model errors and measurement outliers.



Electronics ◽  
2018 ◽  
Vol 7 (11) ◽  
pp. 321 ◽  
Author(s):  
Xin Lai ◽  
Wei Yi ◽  
Yuejiu Zheng ◽  
Long Zhou

In this paper, a novel model parameter identification method and a state-of-charge (SOC) estimator for lithium-ion batteries (LIBs) are proposed to improve the global accuracy of SOC estimation in the all SOC range (0–100%). Firstly, a subregion optimization method based on particle swarm optimization is developed to find the optimal model parameters of LIBs in each subregion, and the optimal number of subregions is investigated from the perspective of accuracy and computation time. Then, to solve the problem of a low accuracy of SOC estimation caused by large model error in the low SOC range, an improved extended Kalman filter (IEKF) algorithm with variable noise covariance is proposed. Finally, the effectiveness of the proposed methods are verified by experiments on two kinds of batteries under three working cycles, and case studies show that the proposed IEKF has better accuracy and robustness than the traditional extended Kalman filter (EKF) in the all SOC range.



Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11 ◽  
Author(s):  
Miaoxin Ji ◽  
Jinhao Liu ◽  
Xiangbo Xu ◽  
Yuyang Guo ◽  
Zhenchun Lu

The Foot-mounted Inertial Pedestrian-Positioning System (FIPPS) based on the Micro-Inertial Measurement Unit (MIMU) is a good choice for the forest fire fighters when the Global Navigation Satellite System is unavailable. Zero Velocity Update (ZUPT) provides a solution for reducing cumulative positioning errors caused by the integral calculation of the inertial navigation. However, the performance of ZUPT is highly affected by the low accuracy and high noise of the MIMU. The accuracy of conventional ZUPT for attitude alignment is reduced by the zero offset of acceleration and the drift of a gyroscope during the standing phase. An initial alignment algorithm based on Adaptive Gradient Descent Algorithm (AGDA) is proposed. In the stepping phase, the extended Kalman filter (EKF) is often used to correct attitude and position in track estimation. However, the measurement noise of the EKF is influenced by the high-frequency acceleration and angular velocity. Thus, the accuracy of the attitude and position will decrease. A double-constrained extended Kalman filtering (DEKF) is proposed. An adaptive parameter positively correlated with the acceleration and angular velocity is set, and the measurement noise in the DEKF is adaptively adjusted. The performance of the proposed method is verified by implementing the pedestrian test trajectory using MPU-9150 MIMU manufactured by InvenSense. The results show that the attitude error of the AGDA is 33.82% less than that of the conventional GDA. The attitude error of DEKF is 21.70% less than that of the conventional EKF. The experimental results verify the effectiveness and applicability of the proposed method.



2019 ◽  
Vol 9 (9) ◽  
pp. 1726 ◽  
Author(s):  
Jing Hou ◽  
Yan Yang ◽  
He He ◽  
Tian Gao

An accurate state of charge (SOC) estimation is vital for the safe operation and efficient management of lithium-ion batteries. At present, the extended Kalman filter (EKF) can accurately estimate the SOC under the condition of a precise battery model and deterministic noise statistics. However, in practical applications, the battery characteristics change with different operating conditions and the measurement noise statistics may vary with time, resulting in nonoptimal and even unreliable estimation of SOC by EKF. To improve the SOC estimation accuracy under uncertain measurement noise statistics, a variational Bayesian approximation-based adaptive dual extended Kalman filter (VB-ADEKF) is proposed in this paper. The variational Bayesian inference is integrated with the dual EKF (DEKF) to jointly estimate the lithium-ion battery parameters and SOC. Meanwhile, the measurement noise variances are simultaneously estimated in the SOC estimation process to compensate for the model uncertainties, so that the adaptability of the proposed algorithm to dynamic changes in battery characteristics is greatly improved. A constant current discharge test, a pulse current discharge test, and an urban dynamometer driving schedule (UDDS) test are performed to verify the effectiveness and superiority of the proposed algorithm by comparison with the DEKF algorithm. The experimental results show that the proposed VB-ADEKF algorithm outperforms the traditional DEKF algorithm in terms of SOC estimation accuracy, convergence rate, and robustness.



2018 ◽  
Vol 63 (2) ◽  
pp. 594-601 ◽  
Author(s):  
Yulong Huang ◽  
Yonggang Zhang ◽  
Zhemin Wu ◽  
Ning Li ◽  
Jonathon Chambers


2020 ◽  
Author(s):  
AYUKO SAITO ◽  
Satoru Kizawa ◽  
Yoshikazu Kobayashi ◽  
Kazuto Miyawaki

Abstract This paper presents an extended Kalman filter for pose estimation using noise covariance matrices based on sensor output. Compact and lightweight nine-axis motion sensors are used for motion analysis in widely various fields such as medical welfare and sports. A nine-axis motion sensor includes a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer. Information obtained from the three sensors is useful for estimating joint angles using the Kalman filter. The extended Kalman filter is used widely for state estimation because it can estimate the status with a small computational load. However, determining the process and observation noise covariance matrices in the extended Kalman filter is complicated. The noise covariance matrices in the extended Kalman filter were found for this study based on the sensor output. Postural change appears in the gyroscope output because the rotational motion of the joints produces human movement. Therefore, the process noise covariance matrix was determined based on the gyroscope output. An observation noise covariance matrix was determined based on the accelerometer and magnetometer output because the two sensors’ outputs were used as observation values. During a laboratory experiment, the lower limb joint angles of three participants were measured using an optical 3D motion analysis system and nine-axis motion sensors while participants were walking. The lower limb joint angles estimated using the extended Kalman filter with noise covariance matrices based on sensor output were generally consistent with results obtained from the optical 3D motion analysis system. Furthermore, the lower limb joint angles were measured using nine-axis motion sensors while participants were running in place for about 100 seconds. The experiment results demonstrated the effectiveness of the proposed method for human pose estimation.



Sign in / Sign up

Export Citation Format

Share Document