Performance of Oversampled Polyphase Filterbank Inversion via Fourier Transform

2020 ◽  
Vol 09 (01) ◽  
pp. 2050004 ◽  
Author(s):  
I. S. Morrison ◽  
J. D. Bunton ◽  
W. van Straten ◽  
A. Deller ◽  
A. Jameson

Frequency channelization is a fundamental signal processing operation employed across various domains, including communications and radio astronomy. The polyphase filterbank (PFB) represents an efficient and versatile means of channelization. When strict constraints are placed on the allowable spectral leakage between neighboring channels, an oversampled PFB design is advantageous. A helpful consequence of the oversampling is that inversion of the PFB to recover high temporal resolution is simplified and can be accomplished accurately using Fourier transforms. We describe this inversion approach and identify key design considerations. We examine the residual error and spectral/temporal leakage behavior when a channelizer and its corresponding inverter are cascaded, concluding that near-perfect reconstruction can be approached with appropriate selection of PFB and inverter design parameters.

1988 ◽  
Vol 3 (1) ◽  
pp. 32-38 ◽  
Author(s):  
David G. Cameron ◽  
Ernest E. Armstrong

AbstractFourier transform methods of smoothing and interpolation are applied to X-ray diffraction data. It is shown that, frequently, too small a step size is used. Major gains are to be expected by selection of the optimum step size and use of these methods.A comparison of Fourier transforms of diffractograms of quartz measured between 67 and 69° 2θ, collected at varying step intervals (0.1 to 0.01° 2θ) was used to illustrate these applications. By examining the Fourier transform of the diffractogram and noting where it decays to die baseline, a reasonable estimate of the optimal step interval can be obtained. In addition, Fourier interpolation can be used to enhance the appearance of the diffractogram, approximating a continuous plot.


1988 ◽  
Vol 42 (2) ◽  
pp. 353-359 ◽  
Author(s):  
Steven M. Donahue ◽  
Chris W. Brown ◽  
Robert J. Obremski

Two- and three-component mixtures of methylated benzenes were analyzed with the use of both infrared and UV spectra. The spectra of known mixtures were Fourier transformed and coefficients from the transforms selected to form coordinates of vectors. The resulting vectors were subjected to factor analysis to obtain representations for multicomponent analysis. A total of eight data sets were analyzed by factor analysis after preprocessing by taking the Fourier transforms of the spectra. The eight data sets were also analyzed by the P-matrix method (inverse Beer's law) in the spectral domain after preprocessing of the data to allow selection of the optimum analytical wavenumbers. This spectral method was compared to the Fourier transform method using cross-validation, in which one sample at a time was left out of the standards and treated as an unknown. The Standard Error of Prediction (SEP) was calculated for the two methods for all possible numbers of vectors and numbers of wavenumbers, starting with the number equal to the number of components and increasing up to a total number of standards or some reasonable cut-off value. Processing in the Fourier domain clearly produced the best results for seven of the data sets and equal results for the other set.


Author(s):  
E. Voelkl ◽  
L. F. Allard

The conventional discrete Fourier transform can be extended to a discrete Extended Fourier transform (EFT). The EFT allows to work with discrete data in close analogy to the optical bench, where continuous data are processed. The EFT includes a capability to increase or decrease the resolution in Fourier space (thus the argument that CCD cameras with a higher number of pixels to increase the resolution in Fourier space is no longer valid). Fourier transforms may also be shifted with arbitrary increments, which is important in electron holography. Still, the analogy between the optical bench and discrete optics on a computer is limited by the Nyquist limit. In this abstract we discuss the capability with the EFT to change the initial sampling rate si of a recorded or simulated image to any other(final) sampling rate sf.


2016 ◽  
Vol 22 (2(99)) ◽  
pp. 48-51
Author(s):  
D.S. Kalynychenko ◽  
◽  
Ye.Yu. Baranov ◽  
M.V. Poluian ◽  
◽  
...  

2012 ◽  
Vol 58 (2) ◽  
pp. 177-192 ◽  
Author(s):  
Marek Parfieniuk ◽  
Alexander Petrovsky

Near-Perfect Reconstruction Oversampled Nonuniform Cosine-Modulated Filter Banks Based on Frequency Warping and Subband MergingA novel method for designing near-perfect reconstruction oversampled nonuniform cosine-modulated filter banks is proposed, which combines frequency warping and subband merging, and thus offers more flexibility than known techniques. On the one hand, desirable frequency partitionings can be better approximated. On the other hand, at the price of only a small loss in partitioning accuracy, both warping strength and number of channels before merging can be adjusted so as to minimize the computational complexity of a system. In particular, the coefficient of the function behind warping can be constrained to be a negative integer power of two, so that multiplications related to allpass filtering can be replaced with more efficient binary shifts. The main idea is accompanied by some contributions to the theory of warped filter banks. Namely, group delay equalization is thoroughly investigated, and it is shown how to avoid significant aliasing by channel oversampling. Our research revolves around filter banks for perceptual processing of sound, which are required to approximate the psychoacoustic scales well and need not guarantee perfect reconstruction.


Electronics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 917
Author(s):  
Ickjin Son ◽  
Grace Firsta Lukman ◽  
Mazahir Hussain Shah ◽  
Kwang-Il Jeong ◽  
Jin-Woo Ahn

Switched reluctance motors (SRMs) are simple in structure, easy to manufacture, magnet-less, brushless, and highly robust compared to other AC motors which makes them a good option for applications that operate in harsh environment. However, the motor has non-linear magnetic characteristics, and it comes with various pole-phase combinations and circuit topologies that causes many difficulties in deciding on which type to choose. In this paper, the viability of SRM as a low-cost, rugged machine for vehicle radiator cooling fan is considered. First, necessary design considerations are presented, then three commonly use types of SRM are analyzed: A 3-phase 6/4, 3-phase 12/8, and a 4-phase 8/6 to find their static and dynamic characteristics so the most suitable type can be selected. Simulation results show that the 8/6 SRM produces the highest efficiency with less phase current which reduces the converter burden. However, with asymmetric half bridge converter, eight power switches are required for 8/6 SRM and thus put a burden on the overall drive cost. As a solution, the Miller converter with only six switches for four phase SRM. To verify the proposed idea, the 8/6 SRM was manufactured and tested. The results show that Miller converter can be used for the proposed SRM with slightly reduced efficiency at 80.4%.


2005 ◽  
Vol 59 (6) ◽  
pp. 724-731 ◽  
Author(s):  
R. N. Phalen ◽  
Shane S. Que Hee

This study developed a method to produce uniform captan surface films on a disposable nitrile glove for quantitation with a portable attenuated total reflection Fourier transform infrared (ATR-FTIR) spectrometer. A permeation test was performed using aqueous captan formulation. Uniform captan surface films were produced using solvent casting with 2-propanol and a 25 mm filter holder connected to a vacuum manifold to control solvent evaporation. The coefficient of variation of the reflectance at 1735 ± 5 cm−1 was minimized by selection of the optimum solvent volume, airflow rate, and evaporation time. At room temperature, the lower to upper quantifiable limits were 0.31–20.7 μg/cm2 ( r = 0.9967; p ≤ 0.05) for the outer glove surface and 0.55–17.5 μg/cm2 ( r = 0.9409; p ≤ 0.05) for the inner surface. Relative humidity and temperature did not affect the uncoated gloves at the wavelength of captan analysis. Glove screening using ATR-FTIR was necessary as a control for between-glove variation. Captan permeation, after 8 hours exposure to an aqueous concentration of 217 mg/mL of Captan 50-WP, was detected at 0.8 ± 0.3 μg/cm2 on the inner glove surface. ATR-FTIR can detect captan permeation and can determine the protectiveness of this glove in the field.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Javaid Ahmad ◽  
Shaohong Cheng ◽  
Faouzi Ghrib

Dynamic behaviour of cable networks is highly dependent on the installation location, stiffness, and damping of cross-ties. Thus, these are the important design parameters for a cable network. While the effects of the former two on the network response have been investigated to some extent in the past, the impact of cross-tie damping has rarely been addressed. To comprehend our knowledge of mechanics associated with cable networks, in the current study, an analytical model of a cable network will be proposed by taking into account both cross-tie stiffness and damping. In addition, the damping property of main cables in the network will also be considered in the formulation. This would allow exploring not only the effectiveness of a cross-tie design on enhancing the in-plane stiffness of a constituted cable network, but also its energy dissipation capacity. The proposed analytical model will be applied to networks with different configurations. The influence of cross-tie stiffness and damping on the modal response of various types of networks will be investigated by using the corresponding undamped rigid cross-tie network as a reference base. Results will provide valuable information on the selection of cross-tie properties to achieve more effective cable vibration control.


Sign in / Sign up

Export Citation Format

Share Document