Impact of N-Shaped Wing Morphing on Solar-Powered Aircraft

2020 ◽  
pp. 1-12
Author(s):  
Mostafa E. El-Salamony ◽  
Mohamed A. Aziz

Generally, unmanned aerial vehicles and micro aerial vehicles depend on batteries or conventional fuel as a source of energy. These sources of energy have limited flight time, relatively high cost, and also a certain level of pollutants. Solar energy applied to aerial vehicles is an excellent alternative way to overcome other sources of energy’s disadvantage. This study aimed to design a solar-powered aerial vehicle to achieve continuous flight on Earth. The efficiency of the solar system is related to the absorbed sun rays. The concept of an anti-symmetric N-shaped morphing wing is a good idea to increase the collected solar energy during the daily sun path. But this comes with the penalty of side forces and moments due to the anti-symmetry of the wing. This paper introduces a study for two parameters that strongly affect the aerodynamics of the N-shaped morphing wing; the dihedral part angle and the dihedral part length. The impact of the dihedral angle decreases the lift coefficient and increases the drag coefficient. The impact of the morphing wing on the aircraft performance is also considered.

2021 ◽  
Vol 11 (13) ◽  
pp. 5772
Author(s):  
Dawid Lis ◽  
Adam Januszko ◽  
Tadeusz Dobrocinski

The purpose of this article is to present and discuss the results of a non-standard unnamed aerial vehicle construction with a constant cross-section square-shaped avionic profile. Based on the model’s in-air observed maneuverability, the research of avionic construction behavior was carried out in a water tunnel. The results show the model’s specific lift capabilities in comparison to classical avionic constructions. The characteristic results of the lift coefficient showed that the unmanned aerial vehicle presents favorable features than classic avionic constructions. The model was created with the prospect of using it in the future for dual-use purposes, where unmanned aerial vehicles are currently experiencing very rapid development. When creating the prototype, the focus was on low production cost, as well as convenience in operation. The development of this type of breakthrough avionic solution, which shows extraordinary maneuverability, may contribute to increasing the popularity and, above all, the availability of unmanned aerial vehicles for the largest possible group of recipients because of high avionic properties in relation to the technical construction complexity.


2018 ◽  
Vol 41 (2) ◽  
pp. 497-505 ◽  
Author(s):  
Mingjian Wu ◽  
Tianhang Xiao ◽  
Haisong Ang ◽  
Hongda Li

2020 ◽  
Vol 08 (02) ◽  
pp. 95-117 ◽  
Author(s):  
Farbod Khoshnoud ◽  
Ibrahim I. Esat ◽  
Clarence W. de Silva ◽  
Jason D. Rhodes ◽  
Alina A. Kiessling ◽  
...  

A self-powered scheme is explored for achieving long-endurance operation, with the use of solar power and buoyancy lift. The end goal is the capability of “infinite” endurance while complying with the Unmanned Aerial Vehicle (UAV) dynamics and the required control performance, maneuvering, and duty cycles. Nondimensional power terms related to the UAV power demand and solar energy input are determined in a framework of Optimal Uncertainty Quantification (OUQ). OUQ takes uncertainties and incomplete information in the dynamics and control, available solar energy, and the electric power demand of a solar UAV model into account, and provides an optimal solution for achieving a self-sustained system in terms of energy. Self-powered trajectory tracking, speed and control are discussed. Aerial vehicles of this class can overcome the flight time limitations of current electric UAVs, thereby meeting the needs of many applications. This paper serves as a reference in providing a generalized approach in design of self-powered solar electric multi-rotor UAVs.


2019 ◽  
Vol 103 (1) ◽  
pp. 003685041987775 ◽  
Author(s):  
Yanpeng Hu ◽  
Yanping Yang ◽  
Xiaoping Ma ◽  
Shu Li

The near-space solar-powered unmanned aerial vehicle has broad prospects in application owing to its high altitude long-endurance performance. Launching solar-powered unmanned aerial vehicle into the near-space with balloon-borne approach has advantages over the traditional sliding take-off methods, in that it is able to quickly and safely cross the turbulent zone. In this article, we investigate the control technology of balloon-borne launching for the solar-powered unmanned aerial vehicles. First, the motion of the launching process is divided into longitudinal and lateral-directional motion, with the longitudinal process and its equation addressed in detail. We then analyze the flight state and restriction conditions that the unmanned aerial vehicle should meet during the process. Second, the target variables and constraints are selected to formulate the optimization problem. The control variable parameterization method is applied to find the optimal pitch angle in the releasing-and-pulling process. More explicitly, a three-channel attitude stabilization controller is designed, in which the longitudinal channel takes the optimal pitch angle as the pitch instruction, the transverse channel carries out the zero control of the inclination angle, and the course channel takes the stabilization control, respectively. Numerical simulation results show that our proposed control design is capable of accelerating the solar-powered unmanned aerial vehicles from the vertical state and pulling them up to the horizontal cruising flight state, with the flight angle of attack, the maximum speed, and the maximum axial acceleration in the pulling process all within the designed range.


Drones ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 74 ◽  
Author(s):  
Nex

Unmanned aerial vehicle in geomatics (UAV-g) is a well-established scientific event dedicated to UAVs in geomatics and remote sensing. In the different editions of the journal, new scientific challenges have increased their synergy with adjacent domains, such as robotics and computer vision, thereby increasing the impact of this conference. The 2019 edition has been hosted by the University of Twente (The Netherlands) and has attracted about 300 participants for the full three-day program. Researchers from 36 different countries (from all continents) have presented 89 accepted papers in 17 oral and 2 poster sessions. The presented papers covered multi-disciplinary topics, such as photogrammetry, natural resources monitoring, autonomous navigation, and deep learning. All these contributions have in common the use of UAV platforms for the innovative acquisition and processing of the acquired data and information extracted from the surrounding environment.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Parvathy Rajendran ◽  
Kah Wee Lim ◽  
Kuan Theng Ong

Solar energy offers solar-powered unmanned aerial vehicle (UAV) the possibility of unlimited endurance. Some researchers have developed techniques to achieve perpetual flight by maximizing the power from the sun and by flying in accordance with its azimuth angles. However, flying in a path that follows the sun consumes more energy to sustain level flight. This study optimizes the overall power ratio by adopting the mission profile configuration of optimal solar energy exploitation. Extensive simulation is conducted to optimize and restructure the mission profile phases of UAV and to determine the optimal phase definition of the start, ascent, and descent periods, thereby maximizing the energy from the sun. In addition, a vertical cylindrical flight trajectory instead of maximizing the solar inclination angle has been adopted. This approach improves the net power ratio by 30.84% compared with other techniques. As a result, the battery weight may be massively reduced by 75.23%. In conclusion, the proposed mission profile configuration with the optimal power ratio of the trajectory of the path planning effectively prolongs UAV operation.


Author(s):  
Shiva Prasad U ◽  
Kiran Ravi Kumar ◽  
Vinaya Acharekar ◽  
Rishika Radhakrishnan

High Altitude Long Endurance Unmanned Aerial Vehicles (HALE UAVs) could provide an improved service and/or flexibility at a reduced cost over existing systems for a vast number of civil patrol and surveillance applications. This document looks into the Feasibility and Conceptual Design of Solar Powered UAV for HALE applications. It mentions the advancements in technology of the components required to build an efficient solar powered UAV. It also provides a preliminary design methodology that can be adopted for the conceptual design of Solar Powered UAV. It also emphasizes the Aerodynamic difficulties that are faced in HALE configurations.


2011 ◽  
Vol 308-310 ◽  
pp. 548-552
Author(s):  
Wen Jun Dong ◽  
Qin Sun

A novel morphing wing structure is designed based on the concept of re–entrant hexagonal cellular structure. The re–entrant hexagonal cellular structure is adopted because of its ability to undergo large overall displacements with limited deformation in spanwise direction. The presented unconventional cellular based morphing wing structure can satisfy the requirements of configuration changing while wing morphing, which can makes the aircraft remain at the most effective state and perform multiple missions effectively and efficiently. Numerical analyses were performed to exploit the presented wing structures using commercial finite element method. It was shown that the morphing wing structure examined here had can change its relative thickness as much as 5%, which can make lift coefficient increase significantly. Therefore, the presented structure can be served as a smart variable wing structure and has much effective and efficient aerodynamic performance.


Sign in / Sign up

Export Citation Format

Share Document