Water Quality Avoidance Behavior: Bridging the Gap between Perception and Reality

2019 ◽  
Vol 06 (02) ◽  
pp. 1950012 ◽  
Author(s):  
Samrat B. Kunwar ◽  
Alok K. Bohara

Water quality remains a significant issue and a source of serious health concern in the developing world. This paper investigates the water averting behavior at the household level by using a primary survey data from Siddharthangar, Nepal. While past studies have generally attributed averting behaviors to risk perception, we place a particular emphasis on the divergence between the household’s perception of their drinking water quality and the actual water quality level in driving the averting behavior. The findings indicate that the perception of the water quality affects a household’s decision to employ water treatment measures. Households that considered their water to be safe were less likely to treat their water. Furthermore, in addition to perception, the result also suggests the deviation between actual and perceived water quality level could also be a crucial element in the decision to employ water treatment measures. Households with divergence between risk perception and the objective water quality levels were less likely to treat their water and this result held across different specifications. In contrast, households with minimal deviation were more likely to employ treatment measures. Findings also suggest the source of drinking water, education level, income and the taste of the drinking water also drives the averting behavior.

2013 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
A. Grefte ◽  
M. Dignum ◽  
E. R. Cornelissen ◽  
L. C. Rietveld

Abstract. To guarantee a good water quality at the customers tap, natural organic matter (NOM) should be (partly) removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX) for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration) and two IEX configurations (MIEX® and fluidized IEX (FIX)) were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction) to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3), however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.


2020 ◽  
Vol 705 ◽  
pp. 135779 ◽  
Author(s):  
Andrea M. Brunner ◽  
Cheryl Bertelkamp ◽  
Milou M.L. Dingemans ◽  
Annemieke Kolkman ◽  
Bas Wols ◽  
...  

2019 ◽  
Vol 5 (8) ◽  
pp. 1360-1370 ◽  
Author(s):  
Bofu Li ◽  
Benjamin F. Trueman ◽  
Mohammad Shahedur Rahman ◽  
Yaohuan Gao ◽  
Yuri Park ◽  
...  

Silicates represent an alternative drinking water treatment for colour and turbidity due to iron. They may avoid the drawbacks of polyphosphates: increased lead solubility, the potential for increased bacterial growth, and phosphorus in wastewater.


2020 ◽  
Vol 20 (6) ◽  
pp. 2106-2118
Author(s):  
Kassim Chabi ◽  
Jie Zeng ◽  
Lizheng Guo ◽  
Xi Li ◽  
Chengsong Ye ◽  
...  

Abstract People in remote areas are still drinking surface water that may contain certain pollutants including harmful microorganisms and chemical compounds directly without any pretreatment. In this study, we have designed and operated a pilot-scale drinking water treatment unit as part of our aim to find an economic and easily operable technology for providing drinking water to people in those areas. Our small-scale treatment unit contains filtration and disinfection (UV–C irradiation) stages to remove pollutants from source water. The water quality index was determined based on various parameters such as pH, temperature, dissolved oxygen, nitrate, nitrite, ammonium, phosphorus, dissolved organic carbon and bacteria. Water and media samples after DNA extraction were sequenced using Illumina MiSeq throughput sequencing for the determination of bacterial community composition. After the raw water treatment, the reduction of bacteria concentration ranged from 1 to 2 log10. The average removal of the turbidity, ammonium, nitrite, phosphorus and dissolved organic carbon reached up to 95.33%, 85.71%, 100%, 28.57%, and 45%, respectively. In conclusion, multiple biological stages in our designed unit showed an improvement of the drinking water quality. The designed drinking treatment unit produces potable water meeting standards at a lower cost of operation and it can be used in remote areas.


2019 ◽  
Vol 9 (4) ◽  
pp. 694-702 ◽  
Author(s):  
Laura Guerrero-Latorre ◽  
Priscila Balseca-Enriquez ◽  
Carlos Moyota-Tello ◽  
Ronald Bravo-Camino ◽  
Stephanie Davila-Chavez ◽  
...  

Abstract In rural Ecuador, microbial water contamination is associated with child morbidity mainly due to gastroenteritis. Black ceramic water filters (BCWF) are a new household water treatment recently developed to improve microbial removal from the classical model implemented worldwide. This study has assessed BCWF microbial performance at laboratory level by continuous filtering of spiked water with microbial surrogates (Escherichia coli and MS2 bacteriophage) and highly contaminated surface water to evaluate physicochemical pollutants' removal. At field level, baseline studies in Nanegal and Gualea districts have been performed to evaluate water quality and hygiene practices among communities and a six-month BCWF field implementation study in the Santa Marianita community. Results revealed poor drinking water quality in communities studied. Water treatment practices at household level were reported in low percentages. Conversely, results in BCWF filter assays at laboratory level for 600 litres of usage have shown 5.36 logarithms of bacterial removal and 3.83 logarithms for viral removal and significant reductions of physicochemical pollutants considering international standards. BCWF implementation in the Santa Marianita community reveals promising results on microbial water quality in households using this new technology. However, it is important to reinforce correct BCWF maintenance for better performance at field level.


2014 ◽  
Vol 48 (5) ◽  
pp. 3084-3091 ◽  
Author(s):  
Mark V. E. Santana ◽  
Qiong Zhang ◽  
James R. Mihelcic

2019 ◽  
Vol 116 (42) ◽  
pp. 20917-20922
Author(s):  
Maura Allaire ◽  
Taylor Mackay ◽  
Shuyan Zheng ◽  
Upmanu Lall

Drinking-water contaminants pose a risk to public health. When confronted with elevated levels of contaminants, individuals can take actions to reduce exposure. Yet, few studies address averting behavior due to impaired water, particularly in high-income countries. This is a problem of national interest, given that 9 million to 45 million people have been affected by water quality violations in each of the past 34 years. No national analysis has focused on the extent to which communities reduce exposure to contaminated drinking water. Here, we present an assessment that sheds light on how communities across the United States respond to violations of the Safe Drinking Water Act, using consumer purchases of bottled water. This study provides insight into how averting behavior differs across violation types and community demographics. We estimate the change in sales due to water quality violations, using a panel dataset of weekly sales and violation records in 2,151 counties from 2006 to 2015. Critical findings show that violations which pose an immediate health risk are associated with a 14% increase in bottled water sales. Generally, greater averting action is taken against contaminants that might pose a greater perceived health risk and that require more immediate public notification. Rural, low-income communities do not take significant averting action for elevated levels of nitrate, yet experience a higher prevalence of nitrate violations. Findings can inform improvements in public notification and targeting of technical assistance from state regulators and public health agencies in order to reduce community exposure to contaminants.


2019 ◽  
Vol 19 (7) ◽  
pp. 2098-2106
Author(s):  
Chelsea W. Neil ◽  
Yingying Zhao ◽  
Amy Zhao ◽  
Jill Neal ◽  
Maria Meyer ◽  
...  

Abstract Source water quality can significantly impact the efficacy of water treatment unit processes and the formation of chlorinated and brominated trihalomethanes (THMs). Current water treatment plant performance models may not accurately capture how source water quality variations, such as organic matter variability, can impact treatment unit processes. To investigate these impacts, a field study was conducted wherein water samples were collected along the treatment train for 72 hours during a storm event. Systematic sampling and detailed analyses of water quality parameters, including non-purgeable organic carbon (NPOC), UV absorbance, and THM concentrations, as well as chlorine spiking experiments, reveal how the THM formation potential changes in response to treatment unit processes. Results show that the NPOC remaining after treatment has an increased reactivity towards forming THMs, and that brominated THMs form more readily than chlorinated counterparts in a competitive reaction. Thus both the reactivity and quantity of THM precursors must be considered to maintain compliance with drinking water standards, a finding that should be incorporated into the development of model-assisted treatment operation and optimization. Advanced granular activated carbon (GAC) treatment beyond conventional coagulation–flocculation–sedimentation processes may also be necessary to remove the surge loading of THM-formation precursors during a storm event.


Sign in / Sign up

Export Citation Format

Share Document