Continuous Estimation Prediction of Knee Joint Angles Using Fusion of Electromyographic and Inertial Sensors for Active Transfemoral Leg Prostheses

2018 ◽  
Vol 10 (02) ◽  
pp. 1840008
Author(s):  
Alberto López-Delis ◽  
Cristiano J. Miosso ◽  
João L. A. Carvalho ◽  
Adson F. da Rocha ◽  
Geovany A. Borges

Information extracted from the surface electromyographic (sEMG) signals can allow for the detection of movement intention in transfemoral prostheses. The sEMG can help estimate the angle between the femur and the tibia in the sagittal plane. However, algorithms based exclusively on sEMG information can lead to inaccurate results. Data captured by inertial-sensors can improve this estimate. We propose three myoelectric algorithms that extract data from sEMG and inertial sensors using Kalman-filters. The proposed fusion-based algorithms showed improved performance compared to methods based exclusively on sEMG data, generating improvements in the accuracy of knee joint angle estimation and reducing estimation artifacts.

2009 ◽  
Vol 42 (14) ◽  
pp. 2330-2335 ◽  
Author(s):  
J. Favre ◽  
R. Aissaoui ◽  
B.M. Jolles ◽  
J.A. de Guise ◽  
K. Aminian

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 130 ◽  
Author(s):  
Yanxia Deng ◽  
Farong Gao ◽  
Huihui Chen

Surface electromyogram (sEMG) signals are easy to record and offer valuable motion information, such as symmetric and periodic motion in human gait. Due to these characteristics, sEMG is widely used in human-computer interaction, clinical diagnosis and rehabilitation medicine, sports medicine and other fields. This paper aims to improve the estimation accuracy and real-time performance, in the case of the knee joint angle in the lower limb, using a sEMG signal, in a proposed estimation algorithm of the continuous motion, based on the principal component analysis (PCA) and the regularized extreme learning machine (RELM). First, the sEMG signals, collected during the lower limb motion, are preprocessed, while feature samples are extracted from the acquired and preconditioned sEMG signals. Next, the feature samples dimensions are reduced by the PCA, as well as the knee joint angle system is measured by the three-dimensional motion capture system, are followed by the normalization of the feature variable value. The normalized sEMG feature is used as the input layer, in the RELM model, while the joint angle is used as the output layer. After training, the RELM model estimates the knee joint angle of the lower limbs, while it uses the root mean square error (RMSE), Pearson correlation coefficient and model training time as key performance indicators (KPIs), to be further discussed. The RELM, the traditional BP neural network and the support vector machine (SVM) estimation results are compared. The conclusions prove that the RELM method, not only has ensured the validity of results, but also has greatly reduced the learning train time. The presented work is a valuable point of reference for further study of the motion estimation in lower limb.


Author(s):  
F. Sanchez-Guzman ◽  
J. F. Guerrero-Castellanos ◽  
G. Mino-Aguilar ◽  
R. C. Ambrosio-Lazaro ◽  
J. Linares-Flores

2021 ◽  
Author(s):  
AYUKO SAITO ◽  
YUTAKA TANZAWA ◽  
SATORU KIZAWA

Abstract Compact and lightweight nine-axis motion sensors have come to be used for motion analysis in a variety of fields such as medical care, welfare, and sports. Nine-axis motion sensors include a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer and can estimate joint angles using the gyroscope outputs. However, the bias of the gyroscope is often unstable depending on the measurement environment and the accuracy of the gyroscope itself, causing error to accumulate in the angle obtained by integrating the gyroscope output. Although several sensor fusions have been proposed for pose estimation, such as using an accelerometer and a magnetometer, sequentially estimating and correcting the bias of the gyroscope are desirable for more accurate pose estimation. In addition, considering accelerations other than the acceleration due to gravity is important for a sensor fusion method that utilizes the accelerometer to correct the gyroscope output. Therefore, in this study, an extended Kalman filter algorithm was developed to sequentially correct both the gyroscope bias and the centrifugal and tangential acceleration of an accelerometer. The gait measurement results indicate that the proposed method successfully suppresses drift in the estimated knee joint angle over the entire measurement time of knee angle measurement during gait. The knee joint angles estimated using the proposed method were generally consistent with results obtained from an optical 3D motion analysis system. The proposed method is expected to be useful for estimating motion in medical care and welfare applications.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4966
Author(s):  
Xunju Ma ◽  
Yali Liu ◽  
Qiuzhi Song ◽  
Can Wang

Continuous joint angle estimation based on a surface electromyography (sEMG) signal can be used to improve the man-machine coordination performance of the exoskeleton. In this study, we proposed a time-advanced feature and utilized long short-term memory (LSTM) with a root mean square (RMS) feature and its time-advanced feature (RMSTAF; collectively referred to as RRTAF) of sEMG to estimate the knee joint angle. To evaluate the effect of joint angle estimation, we used root mean square error (RMSE) and cross-correlation coefficient ρ between the estimated angle and actual angle. We also compared three methods (i.e., LSTM using RMS, BPNN (back propagation neural network) using RRTAF, and BPNN using RMS) with LSTM using RRTAF to highlight its good performance. Five healthy subjects participated in the experiment and their eight muscle (i.e., rectus femoris (RF), biceps femoris (BF), semitendinosus (ST), gracilis (GC), semimembranosus (SM), sartorius (SR), medial gastrocnemius (MG), and tibialis anterior (TA)) sEMG signals were taken as algorithm inputs. Moreover, the knee joint angles were used as target values. The experimental results showed that, compared with LSTM using RMS, BPNN using RRTAF, and BPNN using RMS, the average RMSE values of LSTM using RRTAF were respectively reduced by 8.57%, 46.62%, and 68.69%, whereas the average ρ values were respectively increased by 0.31%, 4.15%, and 18.35%. The results demonstrated that LSTM using RRTAF, which contained the time-advanced feature, had better performance for estimating the knee joint motion.


2019 ◽  
Vol 6 ◽  
pp. 205566831986854 ◽  
Author(s):  
Rob Argent ◽  
Sean Drummond ◽  
Alexandria Remus ◽  
Martin O’Reilly ◽  
Brian Caulfield

Introduction Joint angle measurement is an important objective marker in rehabilitation. Inertial measurement units may provide an accurate and reliable method of joint angle assessment. The objective of this study was to assess whether a single sensor with the application of machine learning algorithms could accurately measure hip and knee joint angle, and investigate the effect of inertial measurement unit orientation algorithms and person-specific variables on accuracy. Methods Fourteen healthy participants completed eight rehabilitation exercises with kinematic data captured by a 3D motion capture system, used as the reference standard, and a wearable inertial measurement unit. Joint angle was calculated from the single inertial measurement unit using four machine learning models, and was compared to the reference standard to evaluate accuracy. Results Average root-mean-squared error for the best performing algorithms across all exercises was 4.81° (SD = 1.89). The use of an inertial measurement unit orientation algorithm as a pre-processing step improved accuracy; however, the addition of person-specific variables increased error with average RMSE 4.99° (SD = 1.83°). Conclusions Hip and knee joint angle can be measured with a good degree of accuracy from a single inertial measurement unit using machine learning. This offers the ability to monitor and record dynamic joint angle with a single sensor outside of the clinic.


Sign in / Sign up

Export Citation Format

Share Document