Influence of Cooling Rate on Electrical Properties of Zinc Oxide-Based Varistors

1992 ◽  
Vol 31 (Part 1, No. 1) ◽  
pp. 81-86 ◽  
Author(s):  
Shr-Nan Bai ◽  
Tseung-Yuen Tseng
2005 ◽  
Vol 492 (1-2) ◽  
pp. 203-206 ◽  
Author(s):  
Zhi Yan ◽  
Zhi Tang Song ◽  
Wei Li Liu ◽  
Qing Wan ◽  
Fu Min Zhang ◽  
...  

2006 ◽  
Vol 38 (2) ◽  
pp. 131-138 ◽  
Author(s):  
K. Vojisavljevic ◽  
M. Zunic ◽  
G. Brankovic ◽  
T. Sreckovic

Microstructural properties of a commercial zinc oxide powder were modified by mechanical activation in a high-energy vibro-mill. The obtained powders were dry pressed and sintered at 1100?C for 2 h. The electrical properties of grain boundaries of obtained ZnO ceramics were studied using an ac impedance analyzer. For that purpose, the ac electrical response was measured in the temperature range from 23 to 240?C in order to determine the resistance and capacitance of grain boundaries. The activation energies of conduction were obtained using an Arrhenius equation. Donor densities were calculated from Mott-Schottky measurements. The influence of microstructure, types and concentrations of defects on electrical properties was discussed.


2019 ◽  
Vol 8 (4) ◽  
pp. 2713-2718

In the present, varistor ceramics through the combination of zinc oxide (ZnO) with a perovskite material have become widespread because of their unique properties for a wide range of applications in electronic protection devices. Low-voltage zinc oxide (ZnO) varistors with fast response and highly nonlinear electrical properties for overvoltage protection in an integrated circuit are increasingly significant in the application of low-voltage electronics. The present study highlights the interaction between barium titanate (BaTiO3 ) and ZnO varistors through the employment of solid-state reaction method in the production of low-voltage varistors. The effects of BaTiO3 on the microstructure of ZnO varistors were analyzed through scanning electron microscopy (SEM), energy dispersive X-ray analysis spectroscopy (EDS) and X-ray diffraction (XRD). The EDS analysis and XRD measurements suggest the presence of ZnO and BaTiO3 phases. The electrical properties of BaTiO3 -doped ZnO varistors were examined based on the current density-electric field (J-E) characteristics measurement. The varistor properties showed the nonlinear coefficient (α) from 1.8 to 4.8 with the barrier height (φB) ranged from 0.70 to 0.88 eV. The used of BaTiO3 additive in ZnO varistors produced varistor voltages of 4.7 to 14.1 V/mm with the voltage per grain boundary (Vgb) was measured in the ranges 0.03 to 0.05 V. The lowest leakage current density was 348 µA/cm2 , obtained at the samples containing 12 wt.% BaTiO3 with high barrier height. The reduction in barrier height with increasing BaTiO3 content was associated with the excessive amount of BaTiO3 phase, hence cause the deterioration of active grain boundary due to the variation of oxygen (O) vacancies in the grain boundary.


1999 ◽  
Vol 67-68 ◽  
pp. 277-282 ◽  
Author(s):  
A. Löffl ◽  
H. Kerber ◽  
H.-W. Schock ◽  
O. Kluth ◽  
L. Houben ◽  
...  

1990 ◽  
Vol 9 (11) ◽  
pp. 1351-1353 ◽  
Author(s):  
M. F. Ogawa ◽  
Y. Natsume ◽  
T. Hirayama ◽  
H. Sakata

MRS Advances ◽  
2019 ◽  
Vol 4 (2) ◽  
pp. 111-117
Author(s):  
José Bruno Cantuária ◽  
Giovani Gozzi ◽  
Lucas Fugikawa Santos

AbstractZinc oxide (ZnO) is a n-type transparent semiconductor which can be processed by low cost techniques (such as spray-pyrolysis and spin-coating) and can be applied as the active layer of thin-films transistors (TFTs). The electrical properties of ZnO films are strongly affected when the device is exposed to room conditions and/or UV-light, suggesting possible applications as UV or/and gas sensors. Atmospheric oxygen molecules adsorbed on ZnO surface act as charge traps, decreasing the material conductivity. The incidence of UV-light causes an increase of the material conductivity due to the photogeneration of electron-hole pairs via direct band-to-band transitions (classic photoconductivity process) and due to the desorption of oxygen molecules, which presents a relatively slower response and is a less understood mechanism. In the current paper, we study the influence of environmental parameters, such as temperature, humidity and UV-light intensity, on the electrical properties of spin-coated ZnO thin films to understand the role of the desorption mechanism on the photoconductivity process. The analysis of the device current vs. time curves shows the existence of two light-induced desorption mechanisms: i) one which increases the electrical conductivity of the ZnO film (desorption-like process) and ii) a second one which decreases the conductivity (adsorption-like process). A Plackett-Burman design of experiment (DOE) was used to study the influence of characterization factors like UV intensity, temperature and humidity on electrical parameters obtained from the experimental curves. We observed that the desorption-like process is a first order mechanism, exhibiting desorption rate proportional to n(t), where n(t) represents the adsorbate concentration as a function of the time, whereas the adsorption-like mechanism exhibits a desorption rate proportional to the forth power of n(t).


Sign in / Sign up

Export Citation Format

Share Document