The Cormorant Field, Blocks 211/21a, 211/26a, UK North Sea

1991 ◽  
Vol 14 (1) ◽  
pp. 73-82 ◽  
Author(s):  
D. J. Taylor ◽  
J. P. A. Dietvorst

AbstractThe Cormorant Oilfield is located approximately 150 km northeast of the Shetland Islands in Blocks 211/2la and 211/ 26a of the UK sector of the North Sea, in water depths of 500-550 ft. The field was discovered in 1972 by exploration well 211/ 26-1 and consists of four discrete accumulations spread along a major, north-south trending fault terrace. Hydrocarbons are produced from Middle Jurassic (Bajocian) sands of the Brent Group, which was deposited in a wave-dominated delta system. The reservoir has a typical gross thickness of 250-300 ft, locally increasing to 550 ft over faults active during sedimentation. Reservoir porosity varies from 16-28%, with average permeabilities ranging from tens of md to 1300md. The accumulation contains under-saturated 34-36° API oil which was initially overpressured by some 1000-1270 psi. The stock tank oil initially in place and ultimate recovery are estimated at 1568 MMBBL and 623 MMBBL, respectively, reflecting a recovery factor of 39%. The reserves are produced through crestally-located wells supported by down-dip water injectors, and exported via two fixed platforms and an underwater manifold centre. To date, 59 wells have been drilled and 324 MMBBL (52%) of the estimated reserves have been produced.

2003 ◽  
Vol 20 (1) ◽  
pp. 315-325
Author(s):  
Louise Bater

AbstractThe Cormorant Field was discovered by exploration well 211/26-1 in 1972; the fifth field to be discovered in the Northern North Sea. It straddles blocks 211/21 a and 211/26a and is made up of four discrete accumulations spread along a major N-S trending fault terrace. Oil is produced from the sandstones belonging to the Brent Group. The sedimentary rocks comprising the Brent Group were deposited in a fluvial-wave dominated delta system during the Middle Jurassic. The field is developed from two fixed platforms and an underwater manifold centre and the oil is exported through the Brent system to Sullom Voe in the Shetland Islands. For development purposes the field is split in half; north and south, and it is the northern part, developed by the North Cormorant platform, that is the subject of this review.


Author(s):  
M.N Tsimplis ◽  
D.K Woolf ◽  
T.J Osborn ◽  
S Wakelin ◽  
J Wolf ◽  
...  

Within the framework of a Tyndall Centre research project, sea level and wave changes around the UK and in the North Sea have been analysed. This paper integrates the results of this project. Many aspects of the contribution of the North Atlantic Oscillation (NAO) to sea level and wave height have been resolved. The NAO is a major forcing parameter for sea-level variability. Strong positive response to increasing NAO was observed in the shallow parts of the North Sea, while slightly negative response was found in the southwest part of the UK. The cause of the strong positive response is mainly the increased westerly winds. The NAO increase during the last decades has affected both the mean sea level and the extreme sea levels in the North Sea. The derived spatial distribution of the NAO-related variability of sea level allows the development of scenarios for future sea level and wave height in the region. Because the response of sea level to the NAO is found to be variable in time across all frequency bands, there is some inherent uncertainty in the use of the empirical relationships to develop scenarios of future sea level. Nevertheless, as it remains uncertain whether the multi-decadal NAO variability is related to climate change, the use of the empirical relationships in developing scenarios is justified. The resulting scenarios demonstrate: (i) that the use of regional estimates of sea level increase the projected range of sea-level change by 50% and (ii) that the contribution of the NAO to winter sea-level variability increases the range of uncertainty by a further 10–20 cm. On the assumption that the general circulation models have some skill in simulating the future NAO change, then the NAO contribution to sea-level change around the UK is expected to be very small (<4 cm) by 2080. Wave heights are also sensitive to the NAO changes, especially in the western coasts of the UK. Under the same scenarios for future NAO changes, the projected significant wave-height changes in the northeast Atlantic will exceed 0.4 m. In addition, wave-direction changes of around 20° per unit NAO index have been documented for one location. Such changes raise the possibility of consequential alteration of coastal erosion.


1994 ◽  
Vol 9 (04) ◽  
pp. 244-248 ◽  
Author(s):  
K.P. Seymour ◽  
Robert MacAndrew

2003 ◽  
Vol 20 (1) ◽  
pp. 761-770 ◽  
Author(s):  
A. P. Hillier

AbstractDiscovered in 1966 and starting production in 1968, Leman was the second gas field to come into production in the UK sector of the North Sea and is still producing gas today. It is classified as a giant field with an estimated initial gas-in-place of 397 BCM of gas in the aeolian dune sands of the Rotliegend Group. The field extends over five blocks and is being developed by two licence groups with Shell and Amoco (now BP Amoco) being the operators


Author(s):  
J.W. Horwood ◽  
R.S. Millner

Large catches of sole (Solea solea) were made in early 1996 from the south-western North Sea. Sole suffer physiological damage in waters below 3–4 C. In February 1996 cold water of 3–4 C unusually extended from the Continental coast onto the Dogger Bank. It is likely that the increased catches were due to the consequential distribution and behaviour of the sole, making them more susceptible to capture.Exceptionally large catches of mature sole (Solea solea (L.)) were made in February 1996 by Lowestoft fishermen from the south-western North Sea. Surprisingly this was not welcome. The UK allocation of the North Sea sole is -4 % of the EU Total Allowable Catch (TAC), and fishermen are restricted nationally, and by the fishing companies, to a tightly managed ration. The Lowestoft Journal (8 March 1996) reported the suspension of a local fishing skipper for not throwing back 5000 kg of sole caught in the Silver Pits. We will show that the abnormal catches were due to exceptionally cold waters.Sole in the North Sea are at the northern extremity of their range, with sole seldom living in waters below 5°C (Horwood, 1993). In fact, North Sea sole were successfully introduced into Lake Quarun, Egypt, where they lived in temperatures in excess of 30°C (El-Zarka, 1965). Young sole migrate from their shallow inshore nursery grounds, such as the Waddensea, as winter approaches (Creutzberg & Fonds, 1971).


1991 ◽  
Vol 14 (1) ◽  
pp. 183-189 ◽  
Author(s):  
John W. Erickson ◽  
C. D. Van Panhuys

AbstractThe Osprey Oilfield is located 180 km northeast of the Shetland Islands in Blocks 211/23a and 211/18a in the UK sector of the northern North Sea. The discovery well 211/23-3 was drilled in January 1974 in a water depth of 530 ft. The trap is defined at around 8500 ft TVSS by two dip and fault closed structures, the main 'Horst Block' and the satellite 'Western Pool'. The hydrocarbons are contained in reservoir sandstones belonging to the Middle Jurassic Brent Group which was deposited by a wave-dominated delta system in the East Shetlands Basin. The expected STOIIP and ultimate recovery are estimated at 158 MMBBL and 60 MMBBL of oil respectively, which represents a recovery factor of 38%. The 'Horst Block' contains 85% of the reserves with an OOWC about 150 ft shallower than in the 'Western Pool'. Reservoir quality is excellent, with average porosities varying from 23-26% and average permeabilities varying from 35-5300 md. The development plan envisages eleven satellite wells, six producers and five water injectors, closely clustered around two subsea manifolds. First production is expected in late 1990/early 1991. The wet crude oil will be piped to the Dunlin 'A' platform for processing and from there to the Cormorant Alpha platform into the Brent System pipeline for export to the Sullom Voe terminal.


1994 ◽  
Vol 41 ◽  
pp. 34-49
Author(s):  
Alan Judd ◽  
David Long ◽  
Michael Sankey

Digital seismic reflection (boomer) profiles of an active pockmark, in UK block 15/25, North Sea, reveal that the feature was formed prior to the deposition of the most recent sediments, probably by vigorous (or even catastrophic) gas escape. This release may have been triggered by the melting of ground ice when North Atlantic waters first entered the North Sea after the last glaciation, about 13,000 years ago. Possible sources of the gas are investigated by examining the composite log from a nearby petroleum exploration well; it is concluded that, although the gas may .originate from the Kimmeridge Clay, it probably comes from lignites of Tertiary age. Its migration towards the seabed is interrupted by local accumulations at several horizons, the shallowest of which (<80 m below seabed) is trapped beneath clayey sediments of the Coal Pit Formation. The topography of the base of this layer apparently controls the location of gas migration pathways to the seabed. As these lead to pockmarks which formed long ago, and as these pockmarks are still active today, it is probable that the migration pathways have remained throughout the intervening period. Gas accumulating beneath the Coal Pit Formation may migrate laterally to reach the pathways.


2020 ◽  
Author(s):  
Anthony Kettle

&lt;p&gt;Storm Xaver impacted the northern Europe on 5-6 December 2013. &amp;#160;It developed southeast of Greenland and passed north of Scotland and across southern Norway on a trajectory that led to a cold air outbreak across the North Sea and intense convection activity in northern Europe.&amp;#160; Strong sustained north winds led to a high storm surge that impacted all countries bordering the North Sea. &amp;#160;Storm Xaver was a century scale event with certain locations around the North Sea reporting their highest ever water levels since the start of modern records.&amp;#160; Media reports from the time of the storm chronicle the scale of the disruptions, including many cancelled flights, interrupted rail networks, closed bridges and roads, coastal building collapses, and power blackouts across northern Europe. &amp;#160;Much of this was due to the strong winds, but coastal storm surge flooding was important in the UK, and it led to interrupted port operations around the North Sea.&lt;/p&gt;&lt;p&gt;The storm was important for energy infrastructure and particularly for wind energy infrastructure.&amp;#160; In the northern North Sea, petroleum platforms were evacuated and operations closed ahead of the storm as a precautionary measure.&amp;#160; A number of onshore wind turbines were badly damaged by high winds and lightning strikes in the UK and Germany.&amp;#160; Over the North Sea, wind speeds exceeded the turbine shutdown threshold of 25 m/s for an extended period of time, with economic impacts from the loss of power generation.&amp;#160;&amp;#160; In the German Bight, the FINO1 offshore wind energy research platform was damaged at the 15 m level by large waves. &amp;#160;This was the third report of storm damage to this platform after Storm Britta in 2006 and Storm Tilo in 2007. &amp;#160;Researchers have highlighted the need to reassess&amp;#160; the design criteria for offshore wind turbines based on these kinds of extreme meteorological events. &amp;#160;For the offshore wind industry, an important element of energy meteorology is to characterize both the evolving wind and wave fields during severe storms as both elements contribute to turbine loads and potential damage.&lt;/p&gt;&lt;p&gt;The present conference contribution presents a literature review of the major events during Storm Xaver and impacts on energy infrastructure.&amp;#160; Tide gauge records are reanalyzed to trace the progress of the storm surge wave around the North Sea.&amp;#160; A spectral analysis is used to separate the long period storm surge component, diurnal/semidiurnal tide, and short period components in the original water level record. &amp;#160;The short period component of the tide gauge record is important as it may be linked with infragravity waves that have been implicated in certain cases of offshore infrastructure damage in addition to coastal erosion. &amp;#160;Discussion is made of offshore wave records during the storm.&amp;#160; Storm Xaver is compared with two damaging offshore storms in 2006 and 2007.&lt;/p&gt;


Author(s):  
Beatriz Alonso Castro ◽  
Terje Birkenes ◽  
Huib Oosterveld

Decommissioning is an emerging sector in the UK and Norway, accounting for 2% of total industry expenditure in 2010 increasing to 8% in 2017. In accordance with existing regulations in the North Sea (OSPAR), dumping, and leaving wholly or partly in place disused offshore installations within the maritime area is prohibited. Over the next eight years, 200 platforms are expected to be removed in the North Sea. There are a number of methods to remove offshore installations: Piece small, Reverse installation and Single lift. In the Single lift approach the jacket or the topside is removed in one piece, minimizing significantly the time offshore and therefore the safety and health incidents. But the Piece Small and Reverse Installation are the most common methods and are established and secure although are time consuming and labor intensive [1]. Several potential candidates for single lift technology at varying levels of technical readiness were considered in the past. The majority of the concepts remained on the drawing board, while some were awaiting project commitment. The only that was matured further than this is the Pioneering Spirit. Yme, its first commercial lift, gave this concept the “proven” status. The Yme MOPU, owned by Repsol, was a jack-up type platform standing on three steel legs of 3.5 m diameter. The dry weight of the MOPU was approximately 13,500 t. The Yme MOPU was a challenging unit to remove mainly for three reasons: The platform motions due to the lack of stiffness in the leg support, its position in contact with the caisson wellhead platform, and the fact that the legs could not be pre-cut before the operation. The method selected to remove the platform was Single lift, using the dynamically positioned platform installation and removal vessel Pioneering Spirit. The lifting arrangement consisted of 12 lift beams combined and connected in pairs to yokes. Five specifically designed yokes were installed. The yokes connect the TLS with the MOPU. The structural integrity of each interface was assessed with FE analysis. The Ballast system was used to provide additional clearance. Pioneering Spirit has a total of eighty-seven ballast water tanks, including four so called ‘Quick Drop Ballast Water Tanks’. The removal of the MOPU was performed successfully the 22nd August 2016, after two days work offshore.


2003 ◽  
Vol 20 (1) ◽  
pp. 549-555 ◽  
Author(s):  
R. D. Hayward ◽  
C. A. L. Martin ◽  
D. Harrison ◽  
G. Van Dort ◽  
S. Guthrie ◽  
...  

AbstractThe Flora Field straddles Blocks 31/26a and 31/26c of the UK sector of the North Sea on the southern margin of the Central Graben. The field is located on the Grensen Nose, a long-lived structural high, and was discovered by the Amerada Hess operated well 31/26a-12 in mid-1997.The Flora Field accumulation is reservoired within the Flora Sandstone, an Upper Carboniferous fluvial deposit, and a thin Upper Jurassic veneer, trapped within a tilted fault block. Oil is sourced principally from the Kimmeridge Clay Formation of the Central Graben and is sealed by overlying Lower Cretaceous marls and Upper Cretaceous Chalk Group.Reservoir quality is generally good with average net/gross of 85% and porosity of 21%, although permeability (Kh) exhibits a great deal of heterogeneity with a range of 0.1 to <10000mD (average 300 mD). The reservoir suffers both sub-horizontal (floodplain shales) and vertical (faults) compartmentalization, as well as fracturing and a tar mat at the oil-water contact modifying flow and sweep of the reservoir. Expected recoverable reserves currently stand at 13 MMBBL


Sign in / Sign up

Export Citation Format

Share Document