The impact of heterogeneous mixed siliciclastic-carbonate systems on CO2 geological storage

2021 ◽  
pp. petgeo2020-086
Author(s):  
Azadeh Pourmalek ◽  
Andrew J. Newell ◽  
Seyed M. Shariatipour ◽  
Adrian M. Wood

Three different outcrops are selected in this study, each representing a shallow marine system with varying heterogeneity provided by siliciclastic-carbonate mixing that may form a small or large stratigraphic trap. The impact of these styles of mixed facies on CO2 storage is relatively poorly known. This study demonstrates the significance of these systems for safe CO2 geological storage, as stratigraphic traps are likely to be a significant feature of many future storage sites. The three 3D models are based on the: 1. Grayburg Formation (US), which displays spatial permeability linked to variations in the mixture of siliciclastic-carbonate sediments; 2. Lorca Basin outcrop (Spain), which demonstrates the interfingering of clastic and carbonate facies; and 3. Bridport Sand Formation outcrop (UK), an example of a layered reservoir, which has thin carbonate-cemented horizons.This study demonstrates that facies interplay and associated sediment heterogeneity have a varying effect on fluid flow, storage capacity and security. In the Grayburg Formation, storage security and capacity are not controlled by heterogeneity alone but influenced mainly by the permeability of each facies (i.e., permeability contrast), the degree of heterogeneity, and the relative permeability characteristic of the system. In the case of the Lorca Basin, heterogeneity through interfingering of the carbonate and clastic facies improved the storage security regardless of their permeability. For the Bridport Sand Formation, the existence of extended sheets of cemented carbonate contributed to storage security but not storage capacity, which depends on the continuity of the sheets. These mixed systems specially minimise the large buoyancy force that act on the top seal and reduce the reliance of the storage security on the overlying caprock. They also increase the contact area between injected CO2 and brine, thereby promoting the CO2 dissolution processes. Overall, mixed systems contribute to the safe storage of CO2.Thematic collection: This article is part of the Geoscience for CO2 storage collection available at: https://www.lyellcollection.org/cc/geoscience-for-co2-storage

2011 ◽  
Vol 4 ◽  
pp. 4828-4834 ◽  
Author(s):  
D.J. Smith ◽  
D.J. Noy ◽  
S. Holloway ◽  
R.A. Chadwick

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-21
Author(s):  
Zhaoxu Mi ◽  
Fugang Wang ◽  
Zhijie Yang ◽  
Xufeng Li ◽  
Yujie Diao ◽  
...  

CO2 geological storage in deep saline aquifers is an effective way to reduce CO2 emissions. The injection of CO2 inevitably causes a significant pressure increase in reservoirs. When there exist faults which cut through a deep reservoir and shallow aquifer system, there is a risk of the shallow aquifer being impacted by the changes in reservoir hydrodynamic fields. In this paper, a radial model and a 3D model are established by TOUGH2-ECO2N for the reservoir system in the CO2 geological storage demonstration site in the Junggar Basin to analyze the impact of the CO2 injection on the deep reservoir pressure field and the possible influence on the surrounding shallow groundwater sources. According to the results, the influence of CO2 injection on the reservoir pressure field in different periods and different numbers of well is analyzed. The result shows that the number of injection wells has a significant impact on the reservoir pressure field changes. The greater the number of injection wells is, the greater the pressure field changes. However, after the cessation of CO2 injection, the number of injection wells has little impact on the reservoir pressure recovery time. Under the geological conditions of the site and the constant injection pressure, although the CO2 injection has a significant influence on the pressure field in the deep reservoir, the impact on the shallow groundwater source area is minimal and can be neglected and the existing shallow groundwater sources are safe in the given project scenarios.


2004 ◽  
Vol 44 (1) ◽  
pp. 653 ◽  
Author(s):  
C.M. Gibson-Poole ◽  
J.E. Streit ◽  
S.C. Lang ◽  
A.L. Hennig ◽  
C.J. Otto

Potential sites for geological storage of CO2 require detailed assessment of storage capacity, containment potential and migration pathways. A possible candidate is the Flag Sandstone of the Barrow Sub-basin, northwest Australia, sealed by the Muderong Shale. The Flag Sandstone consists of a series of stacked, amalgamated, basin floor fan lobes with good lateral interconnectivity. The main reservoir sandstones have high reservoir quality with an average porosity of 21% and an average permeability of about 1,250 mD. The Muderong Shale has excellent seal capacity, with the potential to withhold an average CO2 column height of 750 m. Other containment issues were addressed by in situ stress and fault stability analysis. An average orientation of 095°N for the maximum horizontal stress was estimated. The stress regime is strike-slip at the likely injection depth (below 1,800 m). Most of the major faults in the study area have east-northeast to northeast trends and failure plots indicate that some of these faults may be reactivated if CO2 injection pressures are not monitored closely. Where average fault dips are known, maximum sustainable formation pressures were estimated to be less than 27 MPa at 2 km depth. Hydrodynamic modelling indicated that the pre-production regional formation water flow direction was from the sub-basin margins towards the centre, with an exit point to the southwest. However, this flow direction and rate have been altered by a hydraulic low in the eastern part of the sub-basin due to hydrocarbon production. The integrated site analysis indicates a potential CO2 storage capacity in the order of thousands of Mtonnes. Such capacity for geological storage could provide a technical solution for reducing greenhouse gas emissions.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 344
Author(s):  
Ping Yue ◽  
Rujie Zhang ◽  
James J. Sheng ◽  
Gaoming Yu ◽  
Feng Liu

As the demands of tight-oil Enhanced Oil Recovery (EOR) and the controlling of anthropogenic carbon emission have become global challenges, Carbon Capture Utilization and Sequestration (CCUS) has been recognized as an effective solution to resolve both needs. However, the influential factors of carbon dioxide (CO2) geological storage in low permeability reservoirs have not been fully studied. Based on core samples from the Huang-3 area of the Ordos Basin, the feasibility and influential factors of geological CO2 sequestration in the Huang-3 area are analyzed through caprock breakthrough tests and a CO2 storage factor experiment. The results indicate that capillary trapping is the key mechanism of the sealing effect by the caprock. With the increase of caprock permeability, the breakthrough pressure and pressure difference decreased rapidly. A good exponential relationship between caprock breakthrough pressure and permeability can be summarized. The minimum breakthrough pressure of CO2 in the caprock of the Huang-3 area is 22 MPa, and the breakthrough pressure gradient is greater than 100 MPa/m. Huang-3 area is suitable for the geological sequestration of CO2, and the risk of CO2 breakthrough in the caprock is small. At the same storage percentage, the recovery factor of crude oil in larger permeability core is higher, and the storage percentage decreases with the increase of recovery factor. It turned out that a low permeability reservoir is easier to store CO2, and the storage percentage of carbon dioxide in the miscible phase is greater than that in the immiscible phase. This study can provide empirical reference for caprock selection and safety evaluation of CO2 geological storage in low permeability reservoirs within Ordos Basin.


Author(s):  
Suguru Uemura ◽  
Ryoto Kataoka ◽  
Shohji Tsushima ◽  
Shuichiro Hirai

The CO2 Geological storage is considered as an effective technology for reducing the emissions of CO2 into the atmosphere. CO2 storage is a technically feasible and effective method for CO2 mitigation because it is based on enhanced oil recovery technology, and storage sites hold significant potential. Currently, field tests for CO2 geological storage are proceeding in many parts of the world. However, the behavior of injected CO2 is still not completely understood. The CO2 storage potential and risk of leakage from reservoirs must be accurately estimated to realize practicable CO2 storage. For this reason, laboratory-scale experimental analysis of the behavior of CO2 injected in sandstone are an important issues. In this study, CO2 distribution and its behavior in sandstone were observed by micro-focus X-ray computed tomography (CT). The X-ray CT can fluoroscope the CO2 in the porous media and reconstruct a three-dimensional CO2 distribution image. A sample was kept under high pressure conditions in a cylindrical pressure vessel and filled with CO2 saturated water. Pressure in the vessel was kept at 7.5 MPa, which is the same condition as a saline aquifer at 750 m depth. Liquid or supercritical CO2 was injected from the end face of water saturated samples. Temperature conditions were set to 20 or 40°C according to the experimental objectives of the CO2 phase. In the experimental results, CO2 distribution in the silica-packed bed and sandstone was clearly visualized with high spatial resolution compared to its diameter. The possibility of improvement in storage technology discussed.


Sign in / Sign up

Export Citation Format

Share Document