scholarly journals Automatic discovery of relationships across multiple network layers

Author(s):  
Andrew Turner ◽  
Hyong. S. Kim ◽  
Tina Wong
PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1525 ◽  
Author(s):  
Gilles Didier ◽  
Christine Brun ◽  
Anaïs Baudot

Various biological networks can be constructed, each featuring gene/protein relationships of different meanings (e.g., protein interactions or gene co-expression). However, this diversity is classically not considered and the different interaction categories are usually aggregated in a single network. The multiplex framework, where biological relationships are represented by different network layers reflecting the various nature of interactions, is expected to retain more information. Here we assessed aggregation, consensus and multiplex-modularity approaches to detect communities from multiple network sources. By simulating random networks, we demonstrated that the multiplex-modularity method outperforms the aggregation and consensus approaches when network layers are incomplete or heterogeneous in density. Application to a multiplex biological network containing 4 layers of physical or functional interactions allowed recovering communities more accurately annotated than their aggregated counterparts. Overall, taking into account the multiplexity of biological networks leads to better-defined functional modules. A user-friendly graphical software to detect communities from multiplex networks, and corresponding C source codes, are available at GitHub (https://github.com/gilles-didier/MolTi).


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 239
Author(s):  
Jun Liu ◽  
Jiangzhou Wang ◽  
Binghui Liu

Communities are often associated with important structural characteristics of a complex network system, therefore detecting communities is considered to be a fundamental problem in network analysis. With the development of data collection technology and platform, more and more sources of network data are acquired, which makes the form of network as well as the related data more complex. To achieve integrative community detection of a multi-layer attributed network that involves multiple network layers together with their attribute data, effectively utilizing the information from the multiple networks and the attributes may greatly enhance the accuracy of community detection. To this end, in this article, we study the integrative community detection problem of a multi-layer attributed network from the perspective of matrix factorization, and propose a penalized alternative factorization (PAF) algorithm to resolve the corresponding optimization problem, followed by the convergence analysis of the PAF algorithm. Results of the numerical study, as well as an empirical analysis, demonstrate the advantages of the PAF algorithm in community discovery accuracy and compatibility with multiple types of network-related data.


2011 ◽  
Vol 32 (3) ◽  
pp. 161-169 ◽  
Author(s):  
Thomas V. Pollet ◽  
Sam G. B. Roberts ◽  
Robin I. M. Dunbar

Previous studies showed that extraversion influences social network size. However, it is unclear how extraversion affects the size of different layers of the network, and how extraversion relates to the emotional intensity of social relationships. We examined the relationships between extraversion, network size, and emotional closeness for 117 individuals. The results demonstrated that extraverts had larger networks at every layer (support clique, sympathy group, outer layer). The results were robust and were not attributable to potential confounds such as sex, though they were modest in size (raw correlations between extraversion and size of network layer, .20 < r < .23). However, extraverts were not emotionally closer to individuals in their network, even after controlling for network size. These results highlight the importance of considering not just social network size in relation to personality, but also the quality of relationships with network members.


Author(s):  
Isiaka Ajewale Alimi

The development in different communication systems as well as multimedia applications and services leads to high rate of Internet usage. However, transmission of information over such networks can be compromised and security breaches such as virus, denial of service, unauthorized access, and theft of proprietary information which may have devastating impact on the system may occur if adequate security measures are not employed. Consequently, building viable, effective, and safe network is one of the main technical challenges of information transmission in campus networks. Furthermore, it has been observed that, network threats and attacks exist from the lower layers of network traffic to the application layer; therefore, this paper proposes an effective multi-layer firewall system for augmenting the functionalities of other network security technologies due to the fact that, irrespective of the type of access control being employed, attacks are still bound to occur. The effectiveness of the proposed network architecture is demonstrated using Cisco Packet Tracer. The simulation results show that, implementation of the proposed topology is viable and offers reasonable degree of security at different network layers.


2021 ◽  
Vol 11 (15) ◽  
pp. 7034
Author(s):  
Hee-Deok Yang

Artificial intelligence technologies and vision systems are used in various devices, such as automotive navigation systems, object-tracking systems, and intelligent closed-circuit televisions. In particular, outdoor vision systems have been applied across numerous fields of analysis. Despite their widespread use, current systems work well under good weather conditions. They cannot account for inclement conditions, such as rain, fog, mist, and snow. Images captured under inclement conditions degrade the performance of vision systems. Vision systems need to detect, recognize, and remove noise because of rain, snow, and mist to boost the performance of the algorithms employed in image processing. Several studies have targeted the removal of noise resulting from inclement conditions. We focused on eliminating the effects of raindrops on images captured with outdoor vision systems in which the camera was exposed to rain. An attentive generative adversarial network (ATTGAN) was used to remove raindrops from the images. This network was composed of two parts: an attentive-recurrent network and a contextual autoencoder. The ATTGAN generated an attention map to detect rain droplets. A de-rained image was generated by increasing the number of attentive-recurrent network layers. We increased the number of visual attentive-recurrent network layers in order to prevent gradient sparsity so that the entire generation was more stable against the network without preventing the network from converging. The experimental results confirmed that the extended ATTGAN could effectively remove various types of raindrops from images.


Author(s):  
Giannis Christoforidis ◽  
Pavlos Kefalas ◽  
Apostolos N. Papadopoulos ◽  
Yannis Manolopoulos

2021 ◽  
Author(s):  
Yinjun Chen ◽  
Gabriel Sanoja ◽  
Costantino Creton

The molecular level transfer of stress from a stiff percolating filler to a stretchable matrix is a crucial and generic mechanism of toughening in soft materials.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1032
Author(s):  
Hyoungsik Nam ◽  
Young In Kim ◽  
Jina Bae ◽  
Junhee Lee

This paper proposes a GateRL that is an automated circuit design framework of CMOS logic gates based on reinforcement learning. Because there are constraints in the connection of circuit elements, the action masking scheme is employed. It also reduces the size of the action space leading to the improvement on the learning speed. The GateRL consists of an agent for the action and an environment for state, mask, and reward. State and reward are generated from a connection matrix that describes the current circuit configuration, and the mask is obtained from a masking matrix based on constraints and current connection matrix. The action is given rise to by the deep Q-network of 4 fully connected network layers in the agent. In particular, separate replay buffers are devised for success transitions and failure transitions to expedite the training process. The proposed network is trained with 2 inputs, 1 output, 2 NMOS transistors, and 2 PMOS transistors to design all the target logic gates, such as buffer, inverter, AND, OR, NAND, and NOR. Consequently, the GateRL outputs one-transistor buffer, two-transistor inverter, two-transistor AND, two-transistor OR, three-transistor NAND, and three-transistor NOR. The operations of these resultant logics are verified by the SPICE simulation.


Sign in / Sign up

Export Citation Format

Share Document