Investigating a new paradigm for designing evolutionary optimisation algorithms using social behaviour evolution

Author(s):  
Mikdam Turkey ◽  
Riccardo Poli
Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3737
Author(s):  
Mehdi Neshat ◽  
Nataliia Sergiienko ◽  
Seyedali Mirjalili ◽  
Meysam Majidi Nezhad ◽  
Giuseppe Piras ◽  
...  

Ocean renewable wave power is one of the more encouraging inexhaustible energy sources, with the potential to be exploited for nearly 337 GW worldwide. However, compared with other sources of renewables, wave energy technologies have not been fully developed, and the produced energy price is not as competitive as that of wind or solar renewable technologies. In order to commercialise ocean wave technologies, a wide range of optimisation methodologies have been proposed in the last decade. However, evaluations and comparisons of the performance of state-of-the-art bio-inspired optimisation algorithms have not been contemplated for wave energy converters’ optimisation. In this work, we conduct a comprehensive investigation, evaluation and comparison of the optimisation of the geometry, tether angles and power take-off (PTO) settings of a wave energy converter (WEC) using bio-inspired swarm-evolutionary optimisation algorithms based on a sample wave regime at a site in the Mediterranean Sea, in the west of Sicily, Italy. An improved version of a recent optimisation algorithm, called the Moth–Flame Optimiser (MFO), is also proposed for this application area. The results demonstrated that the proposed MFO can outperform other optimisation methods in maximising the total power harnessed from a WEC.


Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1291 ◽  
Author(s):  
Hanmin Liu ◽  
Xuesong Yan ◽  
Qinghua Wu

Pre-stack amplitude variation with offset (AVO) elastic parameter inversion is a nonlinear, multi-solution optimisation problem. The techniques that combine intelligent optimisation algorithms and AVO inversion provide an effective identification method for oil and gas exploration. However, these techniques also have shortcomings in solving nonlinear geophysical inversion problems. The evolutionary optimisation algorithms have recognised disadvantages, such as the tendency of convergence to a local optimum resulting in poor local optimisation performance when dealing with multimodal search problems, decreasing diversity and leading to the prematurity of the population as the number of evolutionary iterations increases. The pre-stack AVO elastic parameter inversion is nonlinear with slow convergence, while the pigeon-inspired optimisation (PIO) algorithm has the advantage of fast convergence and better optimisation characteristics. In this study, based on the characteristics of the pre-stack AVO elastic parameter inversion problem, an improved PIO algorithm (IPIO) is proposed by introducing the particle swarm optimisation (PSO) algorithm, an inverse factor, and a Gaussian factor into the PIO algorithm. The experimental comparisons indicate that the proposed IPIO algorithm can achieve better inversion results.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 159
Author(s):  
Mehmed Batilović ◽  
Radovan Đurović ◽  
Zoran Sušić ◽  
Željko Kanović ◽  
Zoran Cekić

In this paper, an original modification of the generalised robust estimation of deformation from observation differences (GREDOD) method is presented with the application of two evolutionary optimisation algorithms, the genetic algorithm (GA) and generalised particle swarm optimisation (GPSO), in the procedure of robust estimation of the displacement vector. The iterative reweighted least-squares (IRLS) method is traditionally used to perform robust estimation of the displacement vector, i.e., to determine the optimal datum solution of the displacement vector. In order to overcome the main flaw of the IRLS method, namely, the inability to determine the global optimal datum solution of the displacement vector if displaced points appear in the set of datum network points, the application of the GA and GPSO algorithms, which are powerful global optimisation techniques, is proposed for the robust estimation of the displacement vector. A thorough and comprehensive experimental analysis of the proposed modification of the GREDOD method was conducted based on Monte Carlo simulations with the application of the mean success rate (MSR). A comparative analysis of the traditional approach using IRLS, the proposed modification based on the GA and GPSO algorithms and one recent modification of the iterative weighted similarity transformation (IWST) method based on evolutionary optimisation techniques is also presented. The obtained results confirmed the quality and practical usefulness of the presented modification of the GREDOD method, since it increased the overall efficiency by about 18% and can provide more reliable results for projects dealing with the deformation analysis of engineering facilities and parts of the Earth’s crust surface.


2020 ◽  
Vol 43 ◽  
Author(s):  
Julian Kiverstein ◽  
Erik Rietveld

Abstract Veissière and colleagues make a valiant attempt at reconciling an internalist account of implicit cultural learning with an externalist account that understands social behaviour in terms of its environment-involving dynamics. However, unfortunately the author's attempt to forge a middle way between internalism and externalism fails. We argue their failure stems from the overly individualistic understanding of the perception of cultural affordances they propose.


2000 ◽  
Vol 179 ◽  
pp. 177-183
Author(s):  
D. M. Rust

AbstractSolar filaments are discussed in terms of two contrasting paradigms. The standard paradigm is that filaments are formed by condensation of coronal plasma into magnetic fields that are twisted or dimpled as a consequence of motions of the fields’ sources in the photosphere. According to a new paradigm, filaments form in rising, twisted flux ropes and are a necessary intermediate stage in the transfer to interplanetary space of dynamo-generated magnetic flux. It is argued that the accumulation of magnetic helicity in filaments and their coronal surroundings leads to filament eruptions and coronal mass ejections. These ejections relieve the Sun of the flux generated by the dynamo and make way for the flux of the next cycle.


Author(s):  
Markus Krüger ◽  
Horst Krist

Abstract. Recent studies have ascertained a link between the motor system and imagery in children. A motor effect on imagery is demonstrated by the influence of stimuli-related movement constraints (i. e., constraints defined by the musculoskeletal system) on mental rotation, or by interference effects due to participants’ own body movements or body postures. This link is usually seen as qualitatively different or stronger in children as opposed to adults. In the present research, we put this interpretation to further scrutiny using a new paradigm: In a motor condition we asked our participants (kindergartners and third-graders) to manually rotate a circular board with a covered picture on it. This condition was compared with a perceptual condition where the board was rotated by an experimenter. Additionally, in a pure imagery condition, children were instructed to merely imagine the rotation of the board. The children’s task was to mark the presumed end position of a salient detail of the respective picture. The children’s performance was clearly the worst in the pure imagery condition. However, contrary to what embodiment theories would suggest, there was no difference in participants’ performance between the active rotation (i. e., motor) and the passive rotation (i. e., perception) condition. Control experiments revealed that this was also the case when, in the perception condition, gaze shifting was controlled for and when the board was rotated mechanically rather than by the experimenter. Our findings indicate that young children depend heavily on external support when imagining physical events. Furthermore, they indicate that motor-assisted imagery is not generally superior to perceptually driven dynamic imagery.


Author(s):  
Sarah Schäfer ◽  
Dirk Wentura ◽  
Christian Frings

Abstract. Recently, Sui, He, and Humphreys (2012) introduced a new paradigm to measure perceptual self-prioritization processes. It seems that arbitrarily tagging shapes to self-relevant words (I, my, me, and so on) leads to speeded verification times when matching self-relevant word shape pairings (e.g., me – triangle) as compared to non-self-relevant word shape pairings (e.g., stranger – circle). In order to analyze the level at which self-prioritization takes place we analyzed whether the self-prioritization effect is due to a tagging of the self-relevant label and the particular associated shape or due to a tagging of the self with an abstract concept. In two experiments participants showed standard self-prioritization effects with varying stimulus features or different exemplars of a particular stimulus-category suggesting that self-prioritization also works at a conceptual level.


2003 ◽  
Vol 58 (4) ◽  
pp. 305-312 ◽  
Author(s):  
Carol J. Gill ◽  
Donald G. Kewman ◽  
Ruth W. Brannon

1995 ◽  
Vol 40 (11) ◽  
pp. 1072-1073
Author(s):  
Michael J. Lambert ◽  
R. Scott Nebeker

Sign in / Sign up

Export Citation Format

Share Document