A three-dimensional mirror augmented by medical imaging

Author(s):  
Tom Giraud ◽  
Matthieu Courgeon ◽  
Marion Tardieu ◽  
Alexandra Roatis ◽  
Xavier Maitre
Author(s):  
David M. Pierce ◽  
Thomas E. Fastl ◽  
Hannah Weisbecker ◽  
Gerhard A. Holzapfel ◽  
Borja Rodriguez-Vila ◽  
...  

Through progress in medical imaging, image analysis and finite element (FE) meshing tools it is now possible to extract patient-specific geometries from medical images of, e.g., abdominal aortic aneurysms (AAAs), and thus to study clinically relevant problems via FE simulations. Medical imaging is most often performed in vivo, and hence the reconstructed model geometry in the problem of interest will represent the in vivo state, e.g., the AAA at physiological blood pressure. However, classical continuum mechanics and FE methods assume that constitutive models and the corresponding simulations start from an unloaded, stress-free reference condition.


2022 ◽  
Vol 8 ◽  
Author(s):  
Runnan He ◽  
Shiqi Xu ◽  
Yashu Liu ◽  
Qince Li ◽  
Yang Liu ◽  
...  

Medical imaging provides a powerful tool for medical diagnosis. In the process of computer-aided diagnosis and treatment of liver cancer based on medical imaging, accurate segmentation of liver region from abdominal CT images is an important step. However, due to defects of liver tissue and limitations of CT imaging procession, the gray level of liver region in CT image is heterogeneous, and the boundary between the liver and those of adjacent tissues and organs is blurred, which makes the liver segmentation an extremely difficult task. In this study, aiming at solving the problem of low segmentation accuracy of the original 3D U-Net network, an improved network based on the three-dimensional (3D) U-Net, is proposed. Moreover, in order to solve the problem of insufficient training data caused by the difficulty of acquiring labeled 3D data, an improved 3D U-Net network is embedded into the framework of generative adversarial networks (GAN), which establishes a semi-supervised 3D liver segmentation optimization algorithm. Finally, considering the problem of poor quality of 3D abdominal fake images generated by utilizing random noise as input, deep convolutional neural networks (DCNN) based on feature restoration method is designed to generate more realistic fake images. By testing the proposed algorithm on the LiTS-2017 and KiTS19 dataset, experimental results show that the proposed semi-supervised 3D liver segmentation method can greatly improve the segmentation performance of liver, with a Dice score of 0.9424 outperforming other methods.


2015 ◽  
pp. 1319-1332
Author(s):  
Juan A. Juanes ◽  
Pablo Ruisoto ◽  
Alberto Prats-Galino ◽  
Andrés Framiñán

The aim of this paper is to demonstrate the major role and potential of three of the most powerful open source computerized tools for the advanced processing of medical images, in the study of neuroanatomy. DICOM images were acquired with radiodiagnostic equipment using 1.5 Tesla Magnetic Resonance (MR) images. Images were further processed using the following applications: first, OsiriXTM version 4.0 32 bits for OS; Second, 3D Slicer version 4.3; and finally, MRIcron, version 6. Advanced neuroimaging processing requires two key features: segmentation and three-dimensional or volumetric reconstruction. Examples of identification and reconstruction of some of the most complex neuroimaging elements such vascular ones and tractographies are included in this paper. The three selected applications represent some of the most versatile technologies within the field of medical imaging.


The Knee ◽  
2008 ◽  
Vol 15 (3) ◽  
pp. 233-237 ◽  
Author(s):  
Constantinos E. Nikolopoulos ◽  
Andreas F. Mavrogenis ◽  
Glykeria Petrocheilou ◽  
Constantinos Kokkinis ◽  
Panayiotis Diamantopoulos ◽  
...  

2001 ◽  
Vol 124 (1) ◽  
pp. 136-140 ◽  
Author(s):  
Cindy M. Grimm ◽  
Joseph J. Crisco ◽  
David H. Laidlaw

We present a technique for fitting a smooth, locally parameterized surface model (called the manifold surface model) to unevenly scattered data describing an anatomical structure. These data are acquired from medical imaging modalities such as CT scans or MRI. The manifold surface is useful for problems which require analyzable or parametric surfaces fitted to data acquired from surfaces of arbitrary topology (e.g., entire bones). This surface modeling work is part of a larger project to model and analyze skeletal joints, in particular the complex of small bones within the wrist and hand. To demonstrate the suitability of this model we fit to several different bones in the hand, and to the same bone from multiple people.


2007 ◽  
Vol 16 (5) ◽  
pp. 1015-1024 ◽  
Author(s):  
Jingkuang Chen ◽  
Xiaoyang Cheng ◽  
I-Ming Shen ◽  
Jian-Hung Liu ◽  
Pai-Chi Li ◽  
...  

Author(s):  
Chih-Wei Chen ◽  
Hong-Sen Kou ◽  
Hsueh-Erh Liu ◽  
Cheng-Keng Chuang ◽  
Li-Jen Wang

Cryosurgery is also called as cryoablation or cryoleision. The third generation of cryo-machine use argon gas for cooling and helium for rewarming to destroy cancer cells. The probes may be put into the tumor during surgery or through the skin (percutaneously). After cryosurgery, the frozen tissue thaws and is either naturally absorbed by the body (for internal tumors), or it dissolves and forms a scab (for external tumors). The main purpose of this paper is to establish a preliminary computer assisted simulation in prostate tumor cryosurgery. A radiologist and an urologist in a medical center in addition to the engineering specialist from the university participated in this interdisciplinary research program. The first step of this simulation protocol is to trim hundreds of two-dimensional medical imaging photos from a patient through the imaging reconstructive software into building a three-dimensional solid modeling. The image data for each patient can be obtained from the x-ray computed tomography (CT), or magnetic resonance imaging (MRI) in the imaging department of hospital. It has successfully built up the related knowledge to overcome the complicacy between the medical imaging modalities and engineering graphic solid modeling with high resolution. It is worthy to mention here that the present solid modeling of prostate can demonstrate the variable diameters and courses of the prostate urethra in vivo. The second step focuses on thermal calculation. So far, there has been no existing commercial software for the specific purpose of the bioheat transfer problem. Hence, user subroutines must be added to the existing commercial software to simulate the clinical situation of cryosurgery. For example, the occurrence of phase change during some specified temperature range and the latent heat of fusion are also incorporated into bio-heat transfer model. It has successfully incorporated bioheat transfer model into the software program to fit the reality in thermal medicine. The third step supplies the data and knowledge concerned with the position of a tumor and the related mechanism of metabolism of living tissue and vessels. The number of probes, the position of each probe, and the operating time of each probe will be explored to ensure a complete killing of the tumor tissue while saving as much healthy surrounding tissue as possible. In this study, the three-dimensional transient temperature distributions based on cryosurgery for prostate tumors have been performed for several cases to find the optimal operating conditions. Different cryoprobes with different freezing time are considered to find the temperature distribution. The simulation results for cryosurgery of prostate tumors will be supplied for practicing physicians as reference to greatly improve the effectiveness of cryosurgery.


Sign in / Sign up

Export Citation Format

Share Document