Motion data alignment and real-time guidance in cloud-based virtual training system

Author(s):  
Wenchuan Wei ◽  
Yao Lu ◽  
Catherine D. Printz ◽  
Sujit Dey
Author(s):  
Zahari Taha ◽  
Mohd Yashim Wong ◽  
Hwa Jen Yap ◽  
Amirul Abdullah ◽  
Wee Kian Yeo

Immersion is one of the most important aspects in ensuring the applicability of Virtual Reality systems to training regimes aiming to improve performance. To ensure that this key aspect is met, the registration of motion between the real world and virtual environment must be made as accurate and as low latency as possible. Thus, an in-house developed Inertial Measurement Unit (IMU) system is developed for use in tracking the movement of the player’s racquet. This IMU tracks 6 DOF motion data and transmits it to the mobile training system for processing. Physically, the custom motion is built into the shape of a racquet grip to give a more natural sensation when swinging the racquet. In addition to that, an adaptive filter framework is also established to cope with different racquet movements automatically, enabling real-time 6 DOF tracking by balancing the jitter and latency. Experiments are performed to compare the efficacy of our approach with other conventional tracking methods such as the using Microsoft Kinect. The results obtained demonstrated noticeable accuracy and lower latency when compared with the aforementioned methods.


2021 ◽  
Vol 11 (4) ◽  
pp. 1618
Author(s):  
Ping-Nan Chen ◽  
Yung-Te Chen ◽  
Hsin Hsiu ◽  
Ruei-Jia Chen

This paper proposes a passivity theorem on the basis of energy concepts to study the stability of force feedback in a virtual haptic system. An impedance-passivity controller (IPC) was designed from the two-port network perspective to improve the chief drawback of haptic systems, namely the considerable time required to reach stability if the equipment consumes energy slowly. The proposed IPC can be used to achieve stability through model parameter selection and to obtain control gain. In particular, haptic performance can be improved for extreme cases of high stiffness and negative damping. Furthermore, a virtual training system for one-degree-of-freedom sticking was developed to validate the experimental platform of our IPC. To ensure consistency in the experiment, we designed a specialized mechanical robot to replace human operation. Finally, compared with basic passivity control systems, our IPC could achieve stable control rapidly.


2016 ◽  
Vol 59 ◽  
Author(s):  
Marco Massa ◽  
Ezio D'Alema ◽  
Chiara Mascandola ◽  
Sara Lovati ◽  
Davide Scafidi ◽  
...  

<p><em>ISMD is the real time INGV Strong Motion database. During the recent August-September 2016 Amatrice, Mw 6.0, seismic sequence, ISMD represented the main tool for the INGV real time strong motion data sharing.  Starting from August 24<sup>th</sup>,  the main task of the web portal was to archive, process and distribute the strong-motion waveforms recorded  by the permanent and temporary INGV accelerometric stations, in the case of earthquakes with magnitude </em><em>≥</em><em> 3.0, occurring  in the Amatrice area and surroundings.  At present (i.e. September 30<sup>th</sup>, 2016), ISMD provides more than 21.000 strong motion waveforms freely available to all users. In particular, about 2.200 strong motion waveforms were recorded by the temporary network installed for emergency in the epicentral area by SISMIKO and EMERSITO working groups. Moreover, for each permanent and temporary recording site, the web portal provide a complete description of the necessary information to properly use the strong motion data.</em></p>


2021 ◽  
Vol 2083 (3) ◽  
pp. 032057
Author(s):  
Shicong Lin ◽  
Xin Tang ◽  
Wanlin Lu ◽  
Zehui Liu

Abstract UAV-borne missile is effective weapon to attack enemy ground targets. It is expensive, costly and difficult to live-fire drill. Using virtual training instead of actual training can greatly improve the training efficiency and the combat effectiveness. The article regards the operation training of a certain type of UAV-borne missile shooting training as the research object, based on the development of a visual simulation system for UAV-borne missile, uses the object-oriented design method to design a virtual training system based on LabVIEW. The system can realize the shooting operation training of trainees in a virtual environment, and achieve the goals of reduce training costs; improve training efficiency and shorten training period.


2014 ◽  
Vol 989-994 ◽  
pp. 4277-4280
Author(s):  
Wen Long Yao

In this paper, the design scheme, technical route and system structure of the interactive marine incinerator operation training system based on Web3D are proposed based on the study of the marine engine room simulator project. The virtual reality technique, visual C# and IE real-time interaction technology are introduced to the marine incinerator operation training system and the development thoughts of the interactive marine incinerator operation training system based on Web3D are elaborated based on the 3D modeling optimization and real-time interaction technology. This study is a new type of marine engineering training mode, it can better meet the STCW convention in Manila amendments on incinerator equipment management requirements.


Sign in / Sign up

Export Citation Format

Share Document