A Distributed Graph Algorithm for Discovering Unique Behavioral Groups from Large-Scale Telco Data

Author(s):  
Qirong Ho ◽  
Wenqing Lin ◽  
Eran Shaham ◽  
Shonali Krishnaswamy ◽  
The Anh Dang ◽  
...  
Keyword(s):  
2021 ◽  
pp. 108059
Author(s):  
Chunyang Wang ◽  
Yuping Wang ◽  
Yiuming Cheung

2019 ◽  
Author(s):  
Linfeng Li ◽  
Peng Wang ◽  
Yao Wang ◽  
Shenghui Wang ◽  
Jun Yan ◽  
...  

BACKGROUND Knowledge graph embedding is an effective semantic representation method for entities and relations in knowledge graphs. Several translation-based algorithms, including TransE, TransH, TransR, TransD, and TranSparse, have been proposed to learn effective embedding vectors from typical knowledge graphs in which the relations between head and tail entities are deterministic. However, in medical knowledge graphs, the relations between head and tail entities are inherently probabilistic. This difference introduces a challenge in embedding medical knowledge graphs. OBJECTIVE We aimed to address the challenge of how to learn the probability values of triplets into representation vectors by making enhancements to existing TransX (where X is E, H, R, D, or Sparse) algorithms, including the following: (1) constructing a mapping function between the score value and the probability, and (2) introducing probability-based loss of triplets into the original margin-based loss function. METHODS We performed the proposed PrTransX algorithm on a medical knowledge graph that we built from large-scale real-world electronic medical records data. We evaluated the embeddings using link prediction task. RESULTS Compared with the corresponding TransX algorithms, the proposed PrTransX performed better than the TransX model in all evaluation indicators, achieving a higher proportion of corrected entities ranked in the top 10 and normalized discounted cumulative gain of the top 10 predicted tail entities, and lower mean rank. CONCLUSIONS The proposed PrTransX successfully incorporated the uncertainty of the knowledge triplets into the embedding vectors.


2021 ◽  
Vol 18 (3) ◽  
pp. 1-24
Author(s):  
Yashuai Lü ◽  
Hui Guo ◽  
Libo Huang ◽  
Qi Yu ◽  
Li Shen ◽  
...  

Due to massive thread-level parallelism, GPUs have become an attractive platform for accelerating large-scale data parallel computations, such as graph processing. However, achieving high performance for graph processing with GPUs is non-trivial. Processing graphs on GPUs introduces several problems, such as load imbalance, low utilization of hardware unit, and memory divergence. Although previous work has proposed several software strategies to optimize graph processing on GPUs, there are several issues beyond the capability of software techniques to address. In this article, we present GraphPEG, a graph processing engine for efficient graph processing on GPUs. Inspired by the observation that many graph algorithms have a common pattern on graph traversal, GraphPEG improves the performance of graph processing by coupling automatic edge gathering with fine-grain work distribution. GraphPEG can also adapt to various input graph datasets and simplify the software design of graph processing with hardware-assisted graph traversal. Simulation results show that, in comparison with two representative highly efficient GPU graph processing software framework Gunrock and SEP-Graph, GraphPEG improves graph processing throughput by 2.8× and 2.5× on average, and up to 7.3× and 7.0× for six graph algorithm benchmarks on six graph datasets, with marginal hardware cost.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Huanqing Cui ◽  
Ruixue Liu ◽  
Shaohua Xu ◽  
Chuanai Zhou

The multistage graph problem is a special kind of single-source single-sink shortest path problem. It is difficult even impossible to solve the large-scale multistage graphs using a single machine with sequential algorithms. There are many distributed graph computing systems that can solve this problem, but they are often designed for general large-scale graphs, which do not consider the special characteristics of multistage graphs. This paper proposes DMGA (Distributed Multistage Graph Algorithm) to solve the shortest path problem according to the structural characteristics of multistage graphs. The algorithm first allocates the graph to a set of computing nodes to store the vertices of the same stage to the same computing node. Next, DMGA calculates the shortest paths between any pair of starting and ending vertices within a partition by the classical dynamic programming algorithm. Finally, the global shortest path is calculated by subresults exchanging between computing nodes in an iterative method. Our experiments show that the proposed algorithm can effectively reduce the time to solve the shortest path of multistage graphs.


10.2196/17645 ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. e17645
Author(s):  
Linfeng Li ◽  
Peng Wang ◽  
Yao Wang ◽  
Shenghui Wang ◽  
Jun Yan ◽  
...  

Background Knowledge graph embedding is an effective semantic representation method for entities and relations in knowledge graphs. Several translation-based algorithms, including TransE, TransH, TransR, TransD, and TranSparse, have been proposed to learn effective embedding vectors from typical knowledge graphs in which the relations between head and tail entities are deterministic. However, in medical knowledge graphs, the relations between head and tail entities are inherently probabilistic. This difference introduces a challenge in embedding medical knowledge graphs. Objective We aimed to address the challenge of how to learn the probability values of triplets into representation vectors by making enhancements to existing TransX (where X is E, H, R, D, or Sparse) algorithms, including the following: (1) constructing a mapping function between the score value and the probability, and (2) introducing probability-based loss of triplets into the original margin-based loss function. Methods We performed the proposed PrTransX algorithm on a medical knowledge graph that we built from large-scale real-world electronic medical records data. We evaluated the embeddings using link prediction task. Results Compared with the corresponding TransX algorithms, the proposed PrTransX performed better than the TransX model in all evaluation indicators, achieving a higher proportion of corrected entities ranked in the top 10 and normalized discounted cumulative gain of the top 10 predicted tail entities, and lower mean rank. Conclusions The proposed PrTransX successfully incorporated the uncertainty of the knowledge triplets into the embedding vectors.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


Sign in / Sign up

Export Citation Format

Share Document