Pseudo-3D Physical Design Flow for Monolithic 3D ICs: Comparisons and Enhancements

2021 ◽  
Vol 26 (5) ◽  
pp. 1-25
Author(s):  
Heechun Park ◽  
Bon Woong Ku ◽  
Kyungwook Chang ◽  
Da Eun Shim ◽  
Sung Kyu Lim

Studies have shown that monolithic 3D ( M3D ) ICs outperform the existing through-silicon-via ( TSV ) -based 3D ICs in terms of power, performance, and area ( PPA ) metrics, primarily due to the orders of magnitude denser vertical interconnections offered by the nano-scale monolithic inter-tier vias. In order to facilitate faster industry adoption of the M3D technologies, physical design tools and methodologies are essential. Recent academic efforts in developing an EDA algorithm for 3D ICs, mainly targeting placement using TSVs, are inadequate to provide commercial-quality GDS layouts. Lately, pseudo-3D approaches have been devised, which utilize commercial 2D IC EDA engines with tricks that help them operate as an efficient 3D IC CAD tool. In this article, we provide thorough discussions and fair comparisons (both qualitative and quantitative) of the state-of-the-art pseudo-3D design flows, with analysis of limitations in each design flow and solutions to improve their PPA metrics. Moreover, we suggest a hybrid pseudo-3D design flow that achieves both benefits. Our enhancements and the inter-mixed design flow, provide up to an additional 26% wirelength, 10% power consumption, and 23% of power-delay-product improvements.

2021 ◽  
Vol 65 (4) ◽  
pp. 643-651
Author(s):  
Th. Nitschke-Pagel ◽  
J. Hensel

AbstractThe consideration of residual stresses in fatigue-loaded welds is currently done only qualitatively without reliable knowledge about their real distribution, amount and prefix. Therefore, the tools which enable a more or less unsafe consideration in design concepts are mainly based on unsafe experiences and doubtful assumptions. Since the use of explicitly determined residual stresses outside the welding community is state of the art, the target of the presented paper is to show a practicable way for an enhanced consideration of residual stresses in the current design tools. This is not only limited on residual stresses induced by welding, but also on post-weld treatment processes like HFMI or shot peening. Results of extended experiments with longitudinal fillet welds and butt welds of low and high strength steels evidently show that an improved use of residual stresses in fatigue strength approximation enables a better evaluation of peening processes as well as of material adjusted welding procedures or post-weld stress relief treatments. The concept shows that it is generally possible to overcome the existing extremely conservative but although unsafe rules and regulations and may also enable the improved use of high strength steels.


Author(s):  
Tejaswini M. L ◽  
Aishwarya H ◽  
Akhila M ◽  
B. G. Manasa

The main aim of our work is to achieve low power, high speed design goals. The proposed hybrid adder is designed to meet the requirements of high output swing and minimum power. Performance of hybrid FA in terms of delay, power, and driving capability is largely dependent on the performance of XOR-XNOR circuit. In hybrid FAs maximum power is consumed by XOR-XNOR circuit. In this paper 10T XOR-XNOR is proposed, which provide good driving capabilities and full swing output simultaneously without using any external inverter. The performance of the proposed circuit is measured by simulating it in cadence virtuoso environment using 90-nm CMOS technology. This circuit outperforms its counterparts showing power delay product is reduced than that of available XOR-XNOR modules. Four different full adder designs are proposed utilizing 10T XOR-XNOR, sum and carry modules. The proposed FAs provide improvement in terms of PDP than that of other architectures. To evaluate the performance of proposed full adder circuit, we embedded it in a 4-bit and 8-bit cascaded full adder. Among all FAs two of the proposed FAs provide the best performance for a higher number of bits.


Author(s):  
Han Xu ◽  
Pengwei Liang ◽  
Wei Yu ◽  
Junjun Jiang ◽  
Jiayi Ma

In this paper, we propose a new end-to-end model, called dual-discriminator conditional generative adversarial network (DDcGAN), for fusing infrared and visible images of different resolutions. Unlike the pixel-level methods and existing deep learning-based methods, the fusion task is accomplished through the adversarial process between a generator and two discriminators, in addition to the specially designed content loss. The generator is trained to generate real-like fused images to fool discriminators. The two discriminators are trained to calculate the JS divergence between the probability distribution of downsampled fused images and infrared images, and the JS divergence between the probability distribution of gradients of fused images and gradients of visible images, respectively. Thus, the fused images can compensate for the features that are not constrained by the single content loss. Consequently, the prominence of thermal targets in the infrared image and the texture details in the visible image can be preserved or even enhanced in the fused image simultaneously. Moreover, by constraining and distinguishing between the downsampled fused image and the low-resolution infrared image, DDcGAN can be preferably applied to the fusion of different resolution images. Qualitative and quantitative experiments on publicly available datasets demonstrate the superiority of our method over the state-of-the-art.


Author(s):  
M. C. Parameshwara

This paper proposes six novel approximate 1-bit full adders (AFAs) for inexact computing. The six novel AFAs namely AFA1, AFA2, AFA3, AFA4, AFA5, and AFA6 are derived from state-of-the-art exact 1-bit full adder (EFA) architectures. The performance of these AFAs is compared with reported AFAs (RAAs) in terms of design metrics (DMs) and peak-signal-to-noise-ratio (PSNR). The DMs under consideration are power, delay, power-delay-product (PDP), energy-delay-product (EDP), and area. For a fair comparison, the EFAs and proposed AFAs along with RAAs are described in Verilog, simulated, and synthesized using Cadences’ RC tool, using generic 180 nm standard cell library. The unconstrained synthesis results show that: among all the proposed AFAs, the AFA1 and AFA2 are found to be energy-efficient adders with high PSNR. The AFA1 has a total [Formula: see text][Formula: see text][Formula: see text]W, [Formula: see text][Formula: see text]ps, [Formula: see text][Formula: see text]fJ, [Formula: see text][Formula: see text]Js, [Formula: see text][Formula: see text][Formula: see text]m2, and [Formula: see text][Formula: see text]dB. And the AFA2 has the total [Formula: see text][Formula: see text][Formula: see text]W, [Formula: see text][Formula: see text]ps, [Formula: see text][Formula: see text]fJ, [Formula: see text][Formula: see text]Js, [Formula: see text][Formula: see text][Formula: see text]m2, and [Formula: see text][Formula: see text]dB.


2019 ◽  
pp. 81-114
Author(s):  
Yu‐Shiang Lin ◽  
Sandeep K. Goel ◽  
Jonathan Yuan ◽  
Tom Chen ◽  
Frank Lee
Keyword(s):  

Author(s):  
Huanyu Wang ◽  
Qihang Shi ◽  
Adib Nahiyan ◽  
Domenic Forte ◽  
Mark M. Tehranipoor

Sign in / Sign up

Export Citation Format

Share Document