Monte Carlo Variation Analysis of NCFET-based 6-T SRAM

Author(s):  
Shamiul Alam ◽  
Nazmul Amin ◽  
Sumeet Kumar Gupta ◽  
Ahmedullah Aziz
Author(s):  
Devarajan Ramanujan ◽  
William Z. Bernstein ◽  
Fu Zhao ◽  
Karthik Ramani

The Function Impact Method (FIM) is a semi-quantitative eco-design methodology that is targeted specifically towards the early stages of the design process. The FIM allows a designer to predict the environmental impacts associated with a new functional embodiment by extrapolating knowledge from Life cycle assessment (LCA) of similar existing designs. LCA however, is associated with substantial sources of uncertainty. Furthermore, the FIM uses a subjective weighting scheme for representing function-structure affinities. In the authors’ previous work, a Monte-Carlo variation analysis was used to estimate sensitivity of the input data and select the preferred redesign strategy. This paper proposes a method to formalize the input uncertainties in the FIM by modeling the uncertainties present in the results of the LCA’s and the involved function-structure affinities using Info-gap decision theory. The desirability of redesigning a particular function based on the magnitude of its function-connectivity and eco-impact is estimated, and a decision making methodology based on robust satisficing is discussed. This method is applied for making robust redesign decisions with regards to re-designing a pneumatic impact wrench for sustainability.


Author(s):  
Jun Cao ◽  
Xinmin Lai ◽  
Wayne Cai ◽  
Sun Jin ◽  
Zhongqin Lin

This paper presents algorithms for workpiece positioning analysis under locating errors. Workpiece constraint equations are first constructed using the method of homogenous coordinate transformation. These constraint equations are solved numerically for exact workpiece positional deviations by means of deterministic analysis (using the Newton–Raphson method) and variation analysis (i.e., random analysis using a Monte Carlo simulation). To enhance numerical efficiency in variation analysis, we further propose a quadratic approximation solution using the method of moments instead of the Monte Carlo method. Several case studies are presented to exemplify the proposed algorithms, with comparisons to prior literature results on linear and quadratic analyses. The criterion for using the proposed quadratic variation analysis versus the linear method and Monte Carlo simulation is also presented. By using the proposed algorithms, the exact workpiece positioning errors or quadratic variation approximations can be calculated, with consideration of workpiece surface nonlinearity, interactions between locating errors, and the impact of noninfinitesimal locating errors. This paper represents algorithmic advancement in the field where exact solutions and approximations can all be obtained at users’ choice.


2021 ◽  
Author(s):  
Biao Mei ◽  
Haijin Wang

Abstract To reduce downstream rework and design changes, variation modeling and analysis are indispensable in the assembly of complex products. In this paper, a rigid-compliant hybrid variation analysis method using the Monte Carlo interval approach is developed to assembly ladder structures, such as the skeleton of a horizontal stabilizer or a wing box. We first present the classical locating scheme of a low-rigidity aeronautical structure, and the contributors to the assembly variation of a ladder structure comprising locating errors and part geometric errors. Assembly variations induced by rigid-body locating errors and part geometric errors are mathematically modeled with rigid-body kinematics and the mechanistic method based on the Finite Element Analysis, respectively. And then, the two types of assembly variations are integrated into a rigid-compliant hybrid variation model. Probability distributions of the contributors are often unknown, especially in aircraft manufacturing with low production volume. Therefore, a novel variation analysis method using the Monte Carlo interval approach is proposed to compute the assembly variation, represented in the form of interval structural parameters. The assembly case of a scale wing skeleton shows the proposed rigid-compliant hybrid variation analysis method is efficient in the assembly variation analysis for low-rigidity aircraft structure.


1974 ◽  
Vol 22 ◽  
pp. 307 ◽  
Author(s):  
Zdenek Sekanina

AbstractIt is suggested that the outbursts of Periodic Comet Schwassmann-Wachmann 1 are triggered by impacts of interplanetary boulders on the surface of the comet’s nucleus. The existence of a cloud of such boulders in interplanetary space was predicted by Harwit (1967). We have used the hypothesis to calculate the characteristics of the outbursts – such as their mean rate, optically important dimensions of ejected debris, expansion velocity of the ejecta, maximum diameter of the expanding cloud before it fades out, and the magnitude of the accompanying orbital impulse – and found them reasonably consistent with observations, if the solid constituent of the comet is assumed in the form of a porous matrix of lowstrength meteoric material. A Monte Carlo method was applied to simulate the distributions of impacts, their directions and impact velocities.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


Author(s):  
Ryuichi Shimizu ◽  
Ze-Jun Ding

Monte Carlo simulation has been becoming most powerful tool to describe the electron scattering in solids, leading to more comprehensive understanding of the complicated mechanism of generation of various types of signals for microbeam analysis.The present paper proposes a practical model for the Monte Carlo simulation of scattering processes of a penetrating electron and the generation of the slow secondaries in solids. The model is based on the combined use of Gryzinski’s inner-shell electron excitation function and the dielectric function for taking into account the valence electron contribution in inelastic scattering processes, while the cross-sections derived by partial wave expansion method are used for describing elastic scattering processes. An improvement of the use of this elastic scattering cross-section can be seen in the success to describe the anisotropy of angular distribution of elastically backscattered electrons from Au in low energy region, shown in Fig.l. Fig.l(a) shows the elastic cross-sections of 600 eV electron for single Au-atom, clearly indicating that the angular distribution is no more smooth as expected from Rutherford scattering formula, but has the socalled lobes appearing at the large scattering angle.


Author(s):  
D. R. Liu ◽  
S. S. Shinozaki ◽  
R. J. Baird

The epitaxially grown (GaAs)Ge thin film has been arousing much interest because it is one of metastable alloys of III-V compound semiconductors with germanium and a possible candidate in optoelectronic applications. It is important to be able to accurately determine the composition of the film, particularly whether or not the GaAs component is in stoichiometry, but x-ray energy dispersive analysis (EDS) cannot meet this need. The thickness of the film is usually about 0.5-1.5 μm. If Kα peaks are used for quantification, the accelerating voltage must be more than 10 kV in order for these peaks to be excited. Under this voltage, the generation depth of x-ray photons approaches 1 μm, as evidenced by a Monte Carlo simulation and actual x-ray intensity measurement as discussed below. If a lower voltage is used to reduce the generation depth, their L peaks have to be used. But these L peaks actually are merged as one big hump simply because the atomic numbers of these three elements are relatively small and close together, and the EDS energy resolution is limited.


Author(s):  
Makoto Shiojiri ◽  
Toshiyuki Isshiki ◽  
Tetsuya Fudaba ◽  
Yoshihiro Hirota

In hexagonal Se crystal each atom is covalently bound to two others to form an endless spiral chain, and in Sb crystal each atom to three others to form an extended puckered sheet. Such chains and sheets may be regarded as one- and two- dimensional molecules, respectively. In this paper we investigate the structures in amorphous state of these elements and the crystallization.HRTEM and ED images of vacuum-deposited amorphous Se and Sb films were taken with a JEM-200CX electron microscope (Cs=1.2 mm). The structure models of amorphous films were constructed on a computer by Monte Carlo method. Generated atoms were subsequently deposited on a space of 2 nm×2 nm as they fulfiled the binding condition, to form a film 5 nm thick (Fig. 1a-1c). An improvement on a previous computer program has been made as to realize the actual film formation. Radial distribution fuction (RDF) curves, ED intensities and HRTEM images for the constructed structure models were calculated, and compared with the observed ones.


Sign in / Sign up

Export Citation Format

Share Document