A Real-Time Deep Learning OFDM Receiver

2022 ◽  
Vol 15 (3) ◽  
pp. 1-25
Author(s):  
Stefan Brennsteiner ◽  
Tughrul Arslan ◽  
John Thompson ◽  
Andrew McCormick

Machine learning in the physical layer of communication systems holds the potential to improve performance and simplify design methodology. Many algorithms have been proposed; however, the model complexity is often unfeasible for real-time deployment. The real-time processing capability of these systems has not been proven yet. In this work, we propose a novel, less complex, fully connected neural network to perform channel estimation and signal detection in an orthogonal frequency division multiplexing system. The memory requirement, which is often the bottleneck for fully connected neural networks, is reduced by ≈ 27 times by applying known compression techniques in a three-step training process. Extensive experiments were performed for pruning and quantizing the weights of the neural network detector. Additionally, Huffman encoding was used on the weights to further reduce memory requirements. Based on this approach, we propose the first field-programmable gate array based, real-time capable neural network accelerator, specifically designed to accelerate the orthogonal frequency division multiplexing detector workload. The accelerator is synthesized for a Xilinx RFSoC field-programmable gate array, uses small-batch processing to increase throughput, efficiently supports branching neural networks, and implements superscalar Huffman decoders.

2016 ◽  
Vol 14 (1) ◽  
pp. 172988141668270 ◽  
Author(s):  
Congyi Lyu ◽  
Haoyao Chen ◽  
Xin Jiang ◽  
Peng Li ◽  
Yunhui Liu

Vision-based object tracking has lots of applications in robotics, like surveillance, navigation, motion capturing, and so on. However, the existing object tracking systems still suffer from the challenging problem of high computation consumption in the image processing algorithms. The problem can prevent current systems from being used in many robotic applications which have limitations of payload and power, for example, micro air vehicles. In these applications, the central processing unit- or graphics processing unit-based computers are not good choices due to the high weight and power consumption. To address the problem, this article proposed a real-time object tracking system based on field-programmable gate array, convolution neural network, and visual servo technology. The time-consuming image processing algorithms, such as distortion correction, color space convertor, and Sobel edge, Harris corner features detector, and convolution neural network were redesigned using the programmable gates in field-programmable gate array. Based on the field-programmable gate array-based image processing, an image-based visual servo controller was designed to drive a two degree of freedom manipulator to track the target in real time. Finally, experiments on the proposed system were performed to illustrate the effectiveness of the real-time object tracking system.


Electrician ◽  
2020 ◽  
Vol 14 (3) ◽  
pp. 100-111
Author(s):  
Yetti Yuniati

Abstrak— Komunikasi nirkabel menjadi jenis komunikasi yang digunakan secara luas, spektrum radio yang umumnya digunakan dalam komunikasi nirkabel menjadi tidak cukup untuk memenuhi tuntutan yang tinggi. Visible Light Communication (VLC) menjadi solusi untuk mengatasi kapasitas bandwidth yang kurang memadai ini. Orthogonal Frequency Division Multiplexing (OFDM) menjadi teknik yang dikembangkan untuk sistem komunikasi cahaya tampak karena pada teknik OFDM frekuensi yang digunakan saling orthogonal dan memungkinkan overlap antar frekuensi tanpa menimbulkan interferensi satu sama lain sehingga menghasilkan kecepatan transfer data yang tinggi. Jurnal ini membahas tentang Implementasi Sistem Hermitian Generalized LED Index Modulation (H-GLIM-OFDM). Skema dari H-GLIM-OFDM ini dirancang dalam System Generator pada bahasa pemograman Matlab. Desain di implementasikan dalam FPGA dan diterapkan dengan spesifikasi Arty Board Xilinx Artix-7. Field Programmable Gate Array (FPGA) merupakan perangkat semikonduktor yang dapat diprogram secara fleksibel dan dapat melakukan kinerja yang tinggi untuk implementasi VLC. Hasil yang didapat pada simulasi ini yaitu menggunakan pemanfaatan sumber daya desain 5% BRAM, 11% dari DSP, 8% dari LUT, 18% dari IO, dan 3% BUFG.   Kata Kunci : H-GLIM-OFDM, FPGA Arty Artix-7, Visible Light Communication, Vivado, System Generator


2017 ◽  
Vol 63 (2) ◽  
pp. 137-143
Author(s):  
Seetaiah Kilaru

Abstract Many software based OFDM techniques were proposed from last half decade to improve the performance of the system. This paper tried to implement the same with Hardware implementation. We created Hardware based MISO platform with OFDM. We implemented Alamouti algorithm on this test bed. The test bed is implemented with the help of Field Programmable Gate Array (FPGA). The test bed is functionalized with the help of FPGA through Xilinx based system generator for DSP. In this paper we considered the 2×1 MISO implementation with Alamouti algorithm. The simulation results showed that BER and SNR are considerably high for MISO than SISO. The results also proved that proposed OFDM based Alamouti implementation for MISO is excellent in all performance criterions.


2020 ◽  
Vol 91 (10) ◽  
pp. 104707
Author(s):  
Yinyu Liu ◽  
Hao Xiong ◽  
Chunhui Dong ◽  
Chaoyang Zhao ◽  
Quanfeng Zhou ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1094
Author(s):  
Scott Stainton ◽  
Martin Johnston ◽  
Satnam Dlay ◽  
Paul Anthony Haigh

Neural networks and their application in communication systems are receiving growing attention from both academia and industry. The authors note that there is a disconnect between the typical objective functions of these neural networks with regards to the context in which the neural network will eventually be deployed and evaluated. To this end, a new loss function is proposed and shown to increase the performance of neural networks when implemented in a communication system compared to previous methods. It is further shown that a ‘split complex’ approach used by many implementations can be improved via formalisation of the ‘concatenated complex’ approach described herein. Experimental results using the orthogonal frequency division multiplexing (OFDM) and spectrally efficient frequency division multiplexing (SEFDM) modulation formats with varying bandwidth compression factors over a wireless visible light communication (VLC) link validate the efficacy of the proposed method in a real system, achieving the lowest error vector magnitude (EVM), and thus bit error rate (BER), across all experiments, with a 5 dB to 10 dB improvement in the received symbols EVM overall compared to the baseline implementation, with bandwidth compressions down to 40% compared to OFDM, resulting in a spectral efficiency gain of 67%.


2018 ◽  
Vol 189 ◽  
pp. 04016
Author(s):  
Viet-Hung Nguyen ◽  
Minh-Tuan Nguyen ◽  
Yong-Hwa Kim

Orthogonal frequency division multiplexing (OFDM) is widely used in wired or wireless transmission systems. In the structure of OFDM, a cycle prefix (CP) has been exploited to avoid the effects of inter-symbol interference (ISI) and inter-carrier interference (ICI). This paper proposes a new approach to transmit the signals without CP transmission. Using the deep neural network, the proposed OFDM system transmits data without the CP. Simulation results show that the proposed scheme can estimate the CP at the receiver and overcome the effect of ISI.


Sign in / Sign up

Export Citation Format

Share Document