AuraRing

2022 ◽  
Vol 25 (3) ◽  
pp. 34-37
Author(s):  
Farshid Salemi Parizi ◽  
Eric Whitmire ◽  
Shwetak N. Patel

Wearable computing platforms, such as smartwatches and head-mounted mixed reality displays, demand new input devices for high-fidelity interaction. We present AuraRing, a wearable magnetic tracking system designed for tracking fine-grained finger movement. The hardware consists of a ring with an embedded electromagnetic transmitter coil and a wristband with multiple sensor coils. By measuring the magnetic fields at different points around the wrist, AuraRing estimates the five degree-of-freedom pose of the ring. AuraRing is trained only on simulated data and requires no runtime supervised training, ensuring user and session independence. It has a resolution of 0.1 mm and a dynamic accuracy of 4.4 mm, as measured through a user evaluation with optical ground truth. The ring is completely self-contained and consumes just 2.3 mW of power.

Drones ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 37
Author(s):  
Bingsheng Wei ◽  
Martin Barczyk

We consider the problem of vision-based detection and ranging of a target UAV using the video feed from a monocular camera onboard a pursuer UAV. Our previously published work in this area employed a cascade classifier algorithm to locate the target UAV, which was found to perform poorly in complex background scenes. We thus study the replacement of the cascade classifier algorithm with newer machine learning-based object detection algorithms. Five candidate algorithms are implemented and quantitatively tested in terms of their efficiency (measured as frames per second processing rate), accuracy (measured as the root mean squared error between ground truth and detected location), and consistency (measured as mean average precision) in a variety of flight patterns, backgrounds, and test conditions. Assigning relative weights of 20%, 40% and 40% to these three criteria, we find that when flying over a white background, the top three performers are YOLO v2 (76.73 out of 100), Faster RCNN v2 (63.65 out of 100), and Tiny YOLO (59.50 out of 100), while over a realistic background, the top three performers are Faster RCNN v2 (54.35 out of 100, SSD MobileNet v1 (51.68 out of 100) and SSD Inception v2 (50.72 out of 100), leading us to recommend Faster RCNN v2 as the recommended solution. We then provide a roadmap for further work in integrating the object detector into our vision-based UAV tracking system.


Author(s):  
Stefan Bittmann

Virtual reality (VR) is the term used to describe representation and perception in a computer-generated, virtual environment. The term was coined by author Damien Broderick in his 1982 novel “The Judas Mandala". The term "Mixed Reality" describes the mixing of virtual reality with pure reality. The term "hyper-reality" is also used. Immersion plays a major role here. Immersion describes the embedding of the user in the virtual world. A virtual world is considered plausible if the interaction is logical in itself. This interactivity creates the illusion that what seems to be happening is actually happening. A common problem with VR is "motion sickness." To create a sense of immersion, special output devices are needed to display virtual worlds. Here, "head-mounted displays", CAVE and shutter glasses are mainly used. Input devices are needed for interaction: 3D mouse, data glove, flystick as well as the omnidirectional treadmill, with which walking in virtual space is controlled by real walking movements, play a role here.


2020 ◽  
Vol 1 (2) ◽  
pp. 101-123
Author(s):  
Hiroaki Shiokawa ◽  
Yasunori Futamura

This paper addressed the problem of finding clusters included in graph-structured data such as Web graphs, social networks, and others. Graph clustering is one of the fundamental techniques for understanding structures present in the complex graphs such as Web pages, social networks, and others. In the Web and data mining communities, the modularity-based graph clustering algorithm is successfully used in many applications. However, it is difficult for the modularity-based methods to find fine-grained clusters hidden in large-scale graphs; the methods fail to reproduce the ground truth. In this paper, we present a novel modularity-based algorithm, \textit{CAV}, that shows better clustering results than the traditional algorithm. The proposed algorithm employs a cohesiveness-aware vector partitioning into the graph spectral analysis to improve the clustering accuracy. Additionally, this paper also presents a novel efficient algorithm \textit{P-CAV} for further improving the clustering speed of CAV; P-CAV is an extension of CAV that utilizes the thread-based parallelization on a many-core CPU. Our extensive experiments on synthetic and public datasets demonstrate the performance superiority of our approaches over the state-of-the-art approaches.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Mickaël Begon ◽  
Michael Skipper Andersen ◽  
Raphaël Dumas

Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA) and is a key step in musculoskeletal modeling. The objective of this review was to identify the numerical methods, their validation and performance for the estimation of the human joint kinematics using MKO. Seventy-four papers were extracted from a systematized search in five databases and cross-referencing. Model-derived kinematics were obtained using either constrained optimization or Kalman filtering to minimize the difference between measured (i.e., by skin markers, electromagnetic or inertial sensors) and model-derived positions and/or orientations. While hinge, universal, and spherical joints prevail, advanced models (e.g., parallel and four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and shoulder joints. Models and methods were evaluated using: (i) simulated data based, however, on oversimplified STA and joint models; (ii) reconstruction residual errors, ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to 36 deg and 12 mm) of model geometrical parameters, joint models, and computational methods; (iv) comparison with other approaches (i.e., single body kinematics optimization and nonoptimized kinematics); (v) repeatability studies that showed low intra- and inter-observer variability; and (vi) validation against ground-truth bone kinematics (with errors between 1 deg and 22 deg for tibiofemoral rotations and between 3 deg and 10 deg for glenohumeral rotations). Moreover, MKO was applied to various movements (e.g., walking, running, arm elevation). Additional validations, especially for the upper limb, should be undertaken and we recommend a more systematic approach for the evaluation of MKO. In addition, further model development, scaling, and personalization methods are required to better estimate the secondary degrees-of-freedom (DoF).


2020 ◽  
Author(s):  
Yoonjee Kang ◽  
Denis Thieffry ◽  
Laura Cantini

AbstractNetworks are powerful tools to represent and investigate biological systems. The development of algorithms inferring regulatory interactions from functional genomics data has been an active area of research. With the advent of single-cell RNA-seq data (scRNA-seq), numerous methods specifically designed to take advantage of single-cell datasets have been proposed. However, published benchmarks on single-cell network inference are mostly based on simulated data. Once applied to real data, these benchmarks take into account only a small set of genes and only compare the inferred networks with an imposed ground-truth.Here, we benchmark four single-cell network inference methods based on their reproducibility, i.e. their ability to infer similar networks when applied to two independent datasets for the same biological condition. We tested each of these methods on real data from three biological conditions: human retina, T-cells in colorectal cancer, and human hematopoiesis.GENIE3 results to be the most reproducible algorithm, independently from the single-cell sequencing platform, the cell type annotation system, the number of cells constituting the dataset, or the thresholding applied to the links of the inferred networks. In order to ensure the reproducibility and ease extensions of this benchmark study, we implemented all the analyses in scNET, a Jupyter notebook available at https://github.com/ComputationalSystemsBiology/scNET.


2019 ◽  
Author(s):  
Hesam Mazidi ◽  
Tianben Ding ◽  
Arye Nehorai ◽  
Matthew D. Lew

The resolution and accuracy of single-molecule localization micro-scopes (SMLMs) are routinely benchmarked using simulated data, calibration “rulers,” or comparisons to secondary imaging modalities. However, these methods cannot quantify the nanoscale accuracy of an arbitrary SMLM dataset. Here, we show that by computing localization stability under a well-chosen perturbation with accurate knowledge of the imaging system, we can robustly measure the confidence of individual localizations without ground-truth knowledge of the sample. We demonstrate that our method, termed Wasserstein-induced flux (WIF), measures the accuracy of various reconstruction algorithms directly on experimental 2D and 3D data of microtubules and amyloid fibrils. We further show that WIF confidences can be used to evaluate the mismatch between computational models and imaging data, enhance the accuracy and resolution of recon-structed structures, and discover hidden molecular heterogeneities. As a computational methodology, WIF is broadly applicable to any SMLM dataset, imaging system, and localization algorithm.


2021 ◽  
Vol 11 (17) ◽  
pp. 7877
Author(s):  
Daehyeon Lee ◽  
Woosung Shim ◽  
Munyong Lee ◽  
Seunghyun Lee ◽  
Kye-Dong Jung ◽  
...  

Recently, the development of 3D graphics technology has led to various technologies being combined with reality, where a new reality is defined or studied; they are typically named by combining the name of the technology with “reality”. Representative “reality” includes Augmented Reality, Virtual Reality, Mixed Reality, and eXtended Reality (XR). In particular, research on XR in the web environment is actively being conducted. The Web eXtended Reality Device Application Programming Interface (WebXR Device API), released in 2018, allows instant deployment of XR services to any XR platform requiring only an active web browser. However, the currently released tentative version has poor stability. Therefore, in this study, the performance evaluation of WebXR Device API is performed using three experiments. A camera trajectory experiment is analyzed using ground truth, we checked the standard deviation between the ground truth and WebXR for the X, Y, and Z axes. The difference image experiment is conducted for the front, left, and right directions, which resulted in a visible difference image for each image of ground truth and WebXR, small mean absolute error, and high match rate. In the experiment for measuring the 3D rendering speed, a frame rate similar to that of real-time is obtained.


2020 ◽  
Author(s):  
Stefano Mandija ◽  
Petar I. Petrov ◽  
Jord J. T. Vink ◽  
Sebastian F. W. Neggers ◽  
Cornelis A. T. van den Berg

AbstractFirst in vivo brain conductivity reconstructions using Helmholtz MR-Electrical Properties Tomography (MR-EPT) have been published. However, a large variation in the reconstructed conductivity values is reported and these values differ from ex vivo conductivity measurements. Given this lack of agreement, we performed an in vivo study on eight healthy subjects to provide reference in vivo brain conductivity values. MR-EPT reconstructions were performed at 3 T for eight healthy subjects. Mean conductivity and standard deviation values in the white matter, gray matter and cerebrospinal fluid (σWM, σGM, and σCSF) were computed for each subject before and after erosion of regions at tissue boundaries, which are affected by typical MR-EPT reconstruction errors. The obtained values were compared to the reported ex vivo literature values. To benchmark the accuracy of in vivo conductivity reconstructions, the same pipeline was applied to simulated data, which allow knowledge of ground truth conductivity. Provided sufficient boundary erosion, the in vivo σWM and σGM values obtained in this study agree for the first time with literature values measured ex vivo. This could not be verified for the CSF due to its limited spatial extension. Conductivity reconstructions from simulated data verified conductivity reconstructions from in vivo data and demonstrated the importance of discarding voxels at tissue boundaries. The presented σWM and σGM values can therefore be used for comparison in future studies employing different MR-EPT techniques.


2020 ◽  
Author(s):  
Dougal Hansen ◽  
Anders Daamsgard ◽  
Lucas Zoet

<p>The distribution of strain in actively deforming subglacial till is an important control on the sliding velocity and sediment transport of soft-bedded glaciers. In situ field observations, laboratory experiments, and numerical simulations have demonstrated that strain accumulation within subglacial till is often greatest at the ice-bed interface and decreases monotonically with depth, forming a convex-upward profile. However, the mechanisms that set the form of the profile and depth of deformation remain unconstrained. Here we systematically test the influence of two independent variables, effective stress and sliding velocity, on the distribution of strain in a fine-grained, sandy till emplaced beneath a layer of moving ice. Laboratory sliding experiments, conducted with a brand-new ring-shear device with a transparent sample chamber, are coupled with two suites of state-of-the-art numerical experiments using 1) a discrete element model and 2) a non-local granular fluidity continuum model designed to emulate till deformation. Five effective stresses and five sliding velocities are tested with the other parameter held constant (velocity and effective stress, respectively). For the ring shear experiments, images of the till bed are acquired at regular intervals, and we quantify the displacement of sediment grains that occurs between image captures using digital image correlation. These experiments represent the first instance where the deformation of till during glacier slip can be observed in real-time and linked directly to its controlling processes. Furthermore, they provide an opportunity to juxtapose the predictions of two new granular dynamic models against empirical observations in a controlled setting, providing an invaluable ground truth for future, larger-scale implementations simulating bedform genesis and soft-bedded glacier dynamics.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Francesca Pizzorni Ferrarese ◽  
Flavio Simonetti ◽  
Roberto Israel Foroni ◽  
Gloria Menegaz

Validation and accuracy assessment are the main bottlenecks preventing the adoption of image processing algorithms in the clinical practice. In the classical approach, a posteriori analysis is performed through objective metrics. In this work, a different approach based on Petri nets is proposed. The basic idea consists in predicting the accuracy of a given pipeline based on the identification and characterization of the sources of inaccuracy. The concept is demonstrated on a case study: intrasubject rigid and affine registration of magnetic resonance images. Both synthetic and real data are considered. While synthetic data allow the benchmarking of the performance with respect to the ground truth, real data enable to assess the robustness of the methodology in real contexts as well as to determine the suitability of the use of synthetic data in the training phase. Results revealed a higher correlation and a lower dispersion among the metrics for simulated data, while the opposite trend was observed for pathologic ones. Results show that the proposed model not only provides a good prediction performance but also leads to the optimization of the end-to-end chain in terms of accuracy and robustness, setting the ground for its generalization to different and more complex scenarios.


Sign in / Sign up

Export Citation Format

Share Document