Guard Cell Metabolism and Stomatal Function

2020 ◽  
Vol 71 (1) ◽  
pp. 273-302 ◽  
Author(s):  
Tracy Lawson ◽  
Jack Matthews

The control of gaseous exchange between the leaf and external atmosphere is governed by stomatal conductance ( gs); therefore, stomata play a critical role in photosynthesis and transpiration and overall plant productivity. Stomatal conductance is determined by both anatomical features and behavioral characteristics. Here we review some of the osmoregulatory pathways in guard cell metabolism, genes and signals that determine stomatal function and patterning, and the recent work that explores coordination between gs and carbon assimilation ( A) and the influence of spatial distribution of functional stomata on underlying mesophyll anatomy. We also evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behavior with mesophyll carbon assimilation and explore stomatal kinetics as a possible target to improve A and water use efficiency. By understanding these processes, we can start to provide insight into manipulation of these regulatory pathways to improve stomatal behavior and identify novel unexploited targets for altering stomatal behavior and improving crop plant productivity.

2021 ◽  
Author(s):  
Julia Bres ◽  
Pierre Sepulchre ◽  
Nicolas Viovy ◽  
Nicolas Vuichard

Abstract. The Cretaceous evolution of angiosperm leaves towards higher vein densities enables unprecedented leaf stomatal conductance. Still, simulating and quantifying the impact of such change on plant productivity and transpiration in the peculiar environmental conditions of the Cretaceous remains challenging. Here, we address this issue by combining a paleo proxy-based model with a fully atmosphere-vegetation model that couples stomatal conductance to carbon assimilation. Based on the fossil record, we build and evaluate three consistent pre-angiosperm vegetation parameterizations under two end-members scenarios of pCO2 (280 ppm and 1120 ppm) for the mid-Cretaceous : a reduction of hydraulic or photosynthetic capacity and a combination of both, supported by a likely coevolution of stomatal conductance and photosynthetic biochemistry. Our results suggest that decreasing hydraulic or/and photosynthetic capacities always generates a reduction of transpiration that is predominantly the result of plant productivity variations, modulated by light, water availability in the soil and atmospheric evaporative demand. The high pCO2 acts as a fertilizer on plant productivity that bolsters plant transpiration and water-use efficiency. However, we show that pre-angiosperm physiology does not allow vegetation to grow under low pCO2 because of a positive feedback between leaf stomatal conductance and leaf area index. Our modelling approach stresses the need to better represent paleovegetation physiological traits. It also confirms the hypothesis of a likely evolution of angiosperms from a stage of low hydraulic and photosynthetic capacities at high pCO2 to a stage of high hydraulic and photosynthetic capacities linked to leaves more and more densely irrigated together with a more efficient biochemistry at low pCO2.


Author(s):  
Michele Faralli ◽  
Luana Bontempo ◽  
Pier Luigi Bianchedi ◽  
Claudio Moser ◽  
Massimo Bertamini ◽  
...  

Abstract Stomata control CO2 uptake for photosynthesis and water loss through transpiration, thus playing a key role in leaf thermoregulation, water-use efficiency (iWUE) and plant productivity. In this work, we investigated the relationship between several leaf traits and hypothesized that stomatal behavior to fast (i.e. minutes) environmental changes co-determines along with steady-state traits the physiological response of grapevine to the surrounding fluctuating environment over the growing season. No relationship between iWUE, heat stress (HS) tolerance and stomatal traits was observed in field grown grapevine, suggesting that other physiological mechanisms are involved in determining leaf evaporative cooling capacity and the seasonal ratio of CO2 uptake (A) to stomatal conductance (gs). Indeed, cultivars that in the field had an unexpected combination of high iWUE but low sensitivity to thermal stress, displayed a quick stomatal closure to light, but a sluggish closure to increased vapor pressure deficit (VPD) levels. This strategy aiming both at conserving water under a high-to-low light transition and in prioritizing evaporative cooling under a low-to-high VPD transition, was mainly observed in Regina and Syrah. Moreover, cultivars with different known responses to soil moisture deficit or high air VPD (isohydric vs anisohydric) had opposite behavior under fluctuating environments, with the isohydric cultivar showing slow stomatal closure to reduced light intensity but quick temporal responses to VPD manipulation. We propose that stomatal behavior to fast environmental fluctuations can play a critical role on leaf thermoregulation and water conservation under natural field conditions in grapevine.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hua Liu ◽  
Runguo Zang ◽  
Han Y. H. Chen

Abstract Rangelands play a critical role in the global carbon cycle. However, the eco-physiological mechanisms associated with the effects of grazing on leaf photosynthesis and soil respiration remain poorly understood. To examine the impacts of grazing on leaf photosynthesis and soil respiration, we measured the photosynthetic parameters of the dominant species (Trifolium repens) and the soil respiration in grazed and ungrazed rangelands in the Tianshan Mountains of China. We found that grazing reduced the daily maximum net photosynthetic rate and increased soil respiration rates by 35% and 15%, respectively. The photosynthetic quantum yield, dark respiratory rate, and water use efficiency of T. repens leaves were reduced in grazed plots by 33.3%, 69.2%, and 21.5%, respectively. Our results demonstrated that grazing reduced carbon assimilation while increasing soil respiration within the rangelands in the Tianshan Mountains.


2019 ◽  
Vol 116 (34) ◽  
pp. 16909-16914 ◽  
Author(s):  
Rossella Guerrieri ◽  
Soumaya Belmecheri ◽  
Scott V. Ollinger ◽  
Heidi Asbjornsen ◽  
Katie Jennings ◽  
...  

Multiple lines of evidence suggest that plant water-use efficiency (WUE)—the ratio of carbon assimilation to water loss—has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem-scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance.


2016 ◽  
Vol 43 (8) ◽  
pp. 727 ◽  
Author(s):  
Mingnan Qu ◽  
Saber Hamdani ◽  
Wenzhen Li ◽  
Shimei Wang ◽  
Jiuyou Tang ◽  
...  

Light inside a canopy constantly fluctuates. Under fluctuating light (FL) conditions, stomatal conductance and photosynthetic rate constantly change. In this study, we explored whether this dynamics of stomata movements upon FL influenced the water use efficiency of rice in the field. We used a USDA-curated rice mini-core diversity panel consisting of 204 worldwide distributed accessions. A priori model on dynamic stomatal response to FL was utilised to identify kinetic parameters describing the stomatal delays during the closing (τcl) and the opening (τop) phase. Result showed that τcl had a larger variation than τop across the mini-core panel. τcl was negatively correlated with water use efficiency (WUE) related traits, stem diameter, grain weight per tiller and heading time, but positively correlated with maximum annual temperature, carbon assimilation related traits and biomass (P < 0.05). We further showed a strong correlation of τcl with the relative decrease of biomass under drought in 14 accessions with different τcl. We discussed the adjustment of stomatal conductance under fluctuating light in light of the trade-off between optimising CO2 uptake and optimising water saving. This study suggests that stomatal dynamics under fluctuating light is closely related to drought resistance and hence detailed study is needed to enable its application in breeding drought tolerance in rice.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 445g-446
Author(s):  
Chris A. Martin ◽  
Jean C. Stutx ◽  
Richard L. Garcia

Eureka lemon (Citrus limon L. `Eureka') trees were inoculated with ecotypes of VAM fungi isolated from either a subtropical desert (HVAM) or a temperate grassland (LVAM), and grown for five months at 40.5C/32.2C (high) or 29.4C/21.1C (low) day/night, respectively. Diurnal measurements of leaf carbon assimilation (A), transpiration (E) and stomatal conductance (gs) were then made with a portable photosynthesis system. At high temperatures, afternoon A, E and gs were highest for trees inoculated with LVAM and lowest for trees inoculated with HVAM. At low temperatures, afternoon A, E and gs were highest for trees inoculated with HVAM and lowest for trees inoculated with LVAM. Compared to controls, trees inoculated with HVAM and LVAM displayed rapid mid-day fluctuations in stomatal conductance. At low temperatures, water use efficiency (WUE) during the morning was lowest for trees inoculated with LVAM; whereas, afternoon WUE was not affected by HVAM or LVAM. HVAM and LVAM did not affect WUE at high temperatures. Results indicate that long-term physiological adaptations of lemon trees to temperature are uniquely affected by different VAM fungal ecotypes.


1986 ◽  
Vol 16 (2) ◽  
pp. 177-184 ◽  
Author(s):  
J. S. Pereira ◽  
J. D. Tenhunen ◽  
O. L. Lange ◽  
W. Beyschlag ◽  
A. Meyer ◽  
...  

Gas exchange of adult leaves of Eucalyptusglobulus Labill. trees growing in Portugal was monitored during weekly periods between September 1982 and August 1983. Photosynthetic carbon assimilation rates and leaf water use efficiency were highest (maximum instantaneous values, ca. 12 μmol CO2 m−2 s−1 and ca. 7 mmol CO2 mol H2O−1, respectively) in the spring, somewhat reduced in the winter, and strongly depressed by the middle of the summer, when severe drought conditions prevailed. Diurnal patterns of variation in stomatal conductance and net photosynthesis rates showed a marked seasonal variation. With the transition from winter to spring and summer, as the environmental conditions became warmer and drier, there was an increasing tendency for a midday depression in gas exchange rates as well as a decreasing capacity in the afternoon for recovery to the same net photosynthesis rates measured in the morning. Midday depression in gas exchange and stomatal conductance occurred in leaves positioned both vertically and horizontally inside the measurement cuvettes. Leaf dark respiratory rates also changed with the season; the temperature necessary to evoke similar rates increased with the transition from winter to summer.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 501c-501
Author(s):  
Andrés A. Estrada-Luna ◽  
Jonathan N. Egilla ◽  
Fred T. Davies

The effect of mycorrhizal fungi on gas exchange of micropropagated guava plantlets (Psidium guajava L.) during acclimatization and plant establishment was determined. Guava plantlets (Psidium guajava L. cv. `Media China') were asexually propagated through tissue culture and acclimatized in a glasshouse for eighteen weeks. Half of the plantlets were inoculated with ZAC-19, which is a mixed isolate containing Glomus etunicatum and an unknown Glomus spp. Plantlets were fertilized with modified Long Ashton nutrient solution containing 11 (g P/ml. Gas exchange measurements included photosynthetic rate (A), stomatal conductance (gs), internal CO2 concentration (Ci), transpiration rate (E), water use efficiency (WUE), and vapor pressure deficit (VPD). Measurements were taken at 2, 4, 8 and 18 weeks after inoculation using a LI-6200 portable photosynthesis system (LI-COR Inc. Lincoln, Neb., USA). Two weeks after inoculation, noninoculated plantlets had greater A compared to mycorrhizal plantlets. However, 4 and 8 weeks after inoculation, mycorrhizal plantlets had greater A, gs, Ci and WUE. At the end of the experiment gas exchange was comparable between noninoculated and mycorrhizal plantlets.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


Sign in / Sign up

Export Citation Format

Share Document