scholarly journals The Cretaceous physiological adaptation of angiosperms to a declining pCO<sub>2</sub>: a trait-oriented modelling approach

2021 ◽  
Author(s):  
Julia Bres ◽  
Pierre Sepulchre ◽  
Nicolas Viovy ◽  
Nicolas Vuichard

Abstract. The Cretaceous evolution of angiosperm leaves towards higher vein densities enables unprecedented leaf stomatal conductance. Still, simulating and quantifying the impact of such change on plant productivity and transpiration in the peculiar environmental conditions of the Cretaceous remains challenging. Here, we address this issue by combining a paleo proxy-based model with a fully atmosphere-vegetation model that couples stomatal conductance to carbon assimilation. Based on the fossil record, we build and evaluate three consistent pre-angiosperm vegetation parameterizations under two end-members scenarios of pCO2 (280 ppm and 1120 ppm) for the mid-Cretaceous : a reduction of hydraulic or photosynthetic capacity and a combination of both, supported by a likely coevolution of stomatal conductance and photosynthetic biochemistry. Our results suggest that decreasing hydraulic or/and photosynthetic capacities always generates a reduction of transpiration that is predominantly the result of plant productivity variations, modulated by light, water availability in the soil and atmospheric evaporative demand. The high pCO2 acts as a fertilizer on plant productivity that bolsters plant transpiration and water-use efficiency. However, we show that pre-angiosperm physiology does not allow vegetation to grow under low pCO2 because of a positive feedback between leaf stomatal conductance and leaf area index. Our modelling approach stresses the need to better represent paleovegetation physiological traits. It also confirms the hypothesis of a likely evolution of angiosperms from a stage of low hydraulic and photosynthetic capacities at high pCO2 to a stage of high hydraulic and photosynthetic capacities linked to leaves more and more densely irrigated together with a more efficient biochemistry at low pCO2.

2021 ◽  
Vol 21 (3) ◽  
pp. 1963-1985
Author(s):  
Fei Jiang ◽  
Hengmao Wang ◽  
Jing M. Chen ◽  
Weimin Ju ◽  
Xiangjun Tian ◽  
...  

Abstract. Satellite retrievals of the column-averaged dry air mole fractions of CO2 (XCO2) could help to improve carbon flux estimation due to their good spatial coverage. In this study, in order to assimilate the GOSAT (Greenhouse Gases Observing Satellite) XCO2 retrievals, the Global Carbon Assimilation System (GCAS) is upgraded with new assimilation algorithms, procedures, a localization scheme, and a higher assimilation parameter resolution. This upgraded system is referred to as GCASv2. Based on this new system, the global terrestrial ecosystem (BIO) and ocean (OCN) carbon fluxes from 1 May 2009 to 31 December 2015 are constrained using the GOSAT ACOS (Atmospheric CO2 Observations from Space) XCO2 retrievals (Version 7.3). The posterior carbon fluxes from 2010 to 2015 are independently evaluated using CO2 observations from 52 surface flask sites. The results show that the posterior carbon fluxes could significantly improve the modeling of atmospheric CO2 concentrations, with global mean bias decreases from a prior value of 1.6 ± 1.8 ppm to −0.5 ± 1.8 ppm. The uncertainty reduction (UR) of the global BIO flux is 17 %, and the highest monthly regional UR could reach 51 %. Globally, the mean annual BIO and OCN carbon sinks and their interannual variations inferred in this study are very close to the estimates of CarbonTracker 2017 (CT2017) during the study period, and the inferred mean atmospheric CO2 growth rate and its interannual changes are also very close to the observations. Regionally, over the northern lands, the strongest carbon sinks are seen in temperate North America, followed by Europe, boreal Asia, and temperate Asia; in the tropics, there are strong sinks in tropical South America and tropical Asia, but a very weak sink in Africa. This pattern is significantly different from the estimates of CT2017, but the estimated carbon sinks for each continent and some key regions like boreal Asia and the Amazon are comparable or within the range of previous bottom-up estimates. The inversion also changes the interannual variations in carbon fluxes in most TransCom land regions, which have a better relationship with the changes in severe drought area (SDA) or leaf area index (LAI), or are more consistent with previous estimates for the impact of drought. These results suggest that the GCASv2 system works well with the GOSAT XCO2 retrievals and shows good performance with respect to estimating the surface carbon fluxes; meanwhile, our results also indicate that the GOSAT XCO2 retrievals could help to better understand the interannual variations in regional carbon fluxes.


2020 ◽  
Author(s):  
Vidit Parkar ◽  
Savita Datta ◽  
Haseeb Hakkim ◽  
Ashish Kumar ◽  
Muhammed Shabin ◽  
...  

&lt;p&gt;Tropospheric ozone is a major pollutant and it is harmful for humans at sustained exposures of 40 ppb or more in ambient air. In this study we calibrate the deposition of ozone for stomatal exchange (DO&lt;sub&gt;3&lt;/sub&gt;SE) model for &lt;em&gt;Polyalthia longifolia&lt;/em&gt; (False Ashoka), a tree that accounts for 5-20% of the urban plantations in Indian cities and subsequently use the model to estimate not only the stomatal O&lt;sub&gt;3&lt;/sub&gt; uptake by this tree but also its capability to sequester other criteria air pollutants. We discuss the impact of planting this tree on ozone precursors NOx and VOCs in a roadside plantation scenario for mitigating air pollution.&lt;/p&gt;&lt;p&gt;Stomatal conductance of &lt;em&gt;Polyalthia longifolia&lt;/em&gt; was measured, using a SC-1 Leaf Porometer, at IISER Mohali-Punjab in the NW-IGP (Northwest Indo-Gangetic Plane) which has a sub-tropical dry climate. Stomatal conductance was measured during all the four (Summer, Monsoon, Post-Monsoon, Winter) seasons, while BVOC emission fluxes were quantified using a dynamic plant cuvette during post monsoon, winter and summer season. We use ambient mixing ratios of ozone, NO, NO&lt;sub&gt;2&lt;/sub&gt;, SO&lt;sub&gt;2&lt;/sub&gt; and O&lt;sub&gt;3 &lt;/sub&gt;in combination with the meteorological parameters such as temperature, RH, soil moisture and photosynthetically active radiation (PAR) from the IISER Mohali Atmospheric chemistry facility to quantify &lt;em&gt;Polyalthia longifolia&lt;/em&gt; roadside plantations&amp;#8217; impact on urban air quality through stomatal uptake of air pollutants (primarily NO, NO&lt;sub&gt;2&lt;/sub&gt; and O&lt;sub&gt;3&lt;/sub&gt;) and BVOC emissions. &lt;em&gt;Polyalthia longifolia&lt;/em&gt; displays a number of very interesting characteristics that include being a low isoprene and monoterpene emitter, having an extremely high leaf area index thanks to its height, straight shape and dense canopy. It displays extreme resistance to drought and high vapour pressure deficits in summer allowing stomatal uptake of pollutants and evaporative cooling to continue even under unfavourable meteorological conditions.&lt;/p&gt;


2020 ◽  
Vol 71 (1) ◽  
pp. 273-302 ◽  
Author(s):  
Tracy Lawson ◽  
Jack Matthews

The control of gaseous exchange between the leaf and external atmosphere is governed by stomatal conductance ( gs); therefore, stomata play a critical role in photosynthesis and transpiration and overall plant productivity. Stomatal conductance is determined by both anatomical features and behavioral characteristics. Here we review some of the osmoregulatory pathways in guard cell metabolism, genes and signals that determine stomatal function and patterning, and the recent work that explores coordination between gs and carbon assimilation ( A) and the influence of spatial distribution of functional stomata on underlying mesophyll anatomy. We also evaluate the current literature on mesophyll-driven signals that may coordinate stomatal behavior with mesophyll carbon assimilation and explore stomatal kinetics as a possible target to improve A and water use efficiency. By understanding these processes, we can start to provide insight into manipulation of these regulatory pathways to improve stomatal behavior and identify novel unexploited targets for altering stomatal behavior and improving crop plant productivity.


2021 ◽  
Author(s):  
Renato Braghiere

&lt;p&gt;Addressing the impact of 3D vegetation structure on shortwave radiation transfer in Earth System Models (ESMs) is important for accurate weather forecasting, carbon budget estimates, and climate predictions. While leaf-level photosynthesis is well characterized and understood, estimates of global level carbon assimilation in the literature range from 110 to 175 PgC.yr-1.&amp;#160;I will explore&amp;#160;how neglecting canopy structure leads to significant uncertainties in shortwave radiation partitioning, as well as second order derived canopy properties, such as leaf area index (LAI). I will also cover&amp;#160;how modeled carbon assimilation of the terrestrial biosphere is impacted when a satellite derived clumping index is incorporated into the UKESM.&amp;#160;Finally, I will touch on how the clumping index might be integrated into hyperspectral ESMs to explore the theoretical relationship between canopy structure and photosynthesis.&lt;/p&gt;


2004 ◽  
Vol 31 (2) ◽  
pp. 181 ◽  
Author(s):  
Susanna Marchi ◽  
Roberto Tognetti ◽  
Francesco Primo Vaccari ◽  
Mario Lanini ◽  
Mitja Kaligarič ◽  
...  

Stomatal density, leaf conductance and water relations can be affected by an increase in the concentration of atmospheric CO2, and thus affect plant productivity. However, there is uncertainty about the effects of elevated CO2 on stomatal behaviour, water relations and plant productivity, owing to the lack of long-term experiments in representative natural ecosystems. In this work, variations in stomatal density and index, leaf water relations and plant biomass of semi-natural grassland communities were analysed under field conditions by comparing plants in three different experimental set-ups (natural CO2 springs, plastic tunnels and mini-FACE systems). Natural degassing vents continuously expose the surrounding vegetation to truly long-term elevated CO2 and can complement short-term manipulative experiments. Elevated CO2 concentration effects on stomata persist in the long term, though different species growing in the same environment show species-specific responses. The general decrease in stomatal conductance after exposure to elevated CO2 was not associated with clear changes in stomatal number on leaf surfaces. The hypothesis of long-term adaptive modifications to stomatal number and distribution of plants exposed to elevated CO2 was not supported by these experiments on grassland communities. Elastic cell wall properties were affected to some extent by elevated CO2. Above-ground biomass did not vary between CO2 treatments, leaf area index did not compensate for reduced stomatal conductance, and the root system had potentially greater soil exploration capacity. Considerable between-species variation in response to elevated CO2 may provide a mechanism for changing competitive interactions among plant species.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 467
Author(s):  
Chung-I Chen ◽  
Ya-Nan Wang ◽  
Heng-Hsun Lin ◽  
Ching-Wen Wang ◽  
Jui-Chu Yu ◽  
...  

As anthropogenic greenhouse gas emissions intensify global climate change, plantations have become an important tool to mitigate atmospheric CO2. Our aim in this study was to estimate carbon assimilation and clarify the impact of environmental factors on the photosynthesis of Zelkova serrata (Thunb.) Makino, an important plantation species that is extensively planted in low altitude regions of East Asia. We measured monthly gas exchange parameters and leaf area index to estimate carbon assimilation. The results showed that gas exchange was significantly affected by vapor pressure deficit and temperature, especially in the dry season, and both photosynthetic rate and carbon assimilation decreased. Lower daytime assimilation and higher nighttime respiration during the dry season, which caused a 43% decrease in carbon assimilation in Z. serrata plantations. Z. serrata exhibited lower photosynthetic rate and lower carbon assimilation following planting in a tropical monsoon climate area. Therefore, the effects of extreme weather such as high temperature and vapor pressure deficit on Z. serrata forest carbon budget could be stronger in the future. Leaf area showed seasonal variation, and severe defoliation was caused by a typhoon in the summer. The annual carbon assimilation was estimated at 3.50 Mg C ha−1 year−1 in the study area.


2000 ◽  
Vol 27 (5) ◽  
pp. 451 ◽  
Author(s):  
Mark J. Hovenden ◽  
Tim Brodribb

Gas exchange measurements were made on saplings of Southern Beech, Nothofagus cunninghamii (Hook.) Oerst. collected from three altitudes (350, 780 and 1100 m above sea level) and grown in a common glasshouse trial. Plants were grown from cuttings taken 2 years earlier from a number of plants at each altitude in Mt Field National Park, Tasmania. Stomatal density increased with increasing altitude of origin, and stomatal con-ductance and carbon assimilation rate were linearly related across all samples. The altitude of origin influenced thestomatal conductance and therefore carbon assimilation rate, with plants from 780 m having a greater photosynthetic rate than those from 350 m. The intercellular concentration of CO2 as a ratio of external CO2 concentration (ci/ca) was similar in all plants despite the large variation in maximum stomatal conductance. Carboxylation efficiency was greater in plants from 780 m than in plants from 350 m. Altitude of origin has a strong influence on the photo-synthetic performance of N. cunninghamii plants even when grown under controlled conditions, and this influence is expressed in both leaf biochemistry (carboxylation efficiency) and leaf morphology (stomatal density).


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 252
Author(s):  
Muhammad Shahinur Alam ◽  
David William Lamb ◽  
Nigel W. M. Warwick

Estimating transpiration as an individual component of canopy evapotranspiration using a theoretical approach is extremely useful as it eliminates the complexity involved in partitioning evapotranspiration. A model to predict transpiration based on radiation intercepted at various levels of canopy leaf area index (LAI) was developed in a controlled environment using a pasture species, tall fescue (Festuca arundinacea var. Demeter). The canopy was assumed to be a composite of two indistinct layers defined as sunlit and shaded; the proportion of which was calculated by utilizing a weighted model (W model). The radiation energy utilized by each layer was calculated from the PAR at the top of the canopy and the fraction of absorbed photosynthetically active radiation (fAPAR) corresponding to the LAI of the sunlit and shaded layers. A relationship between LAI and fAPAR was also established for this specific canopy to aid the calculation of energy interception. Canopy conductance was estimated from scaling up of stomatal conductance measured at the individual leaf level. Other environmental factors that drive transpiration were monitored accordingly for each individual layer. The Penman–Monteith and Jarvis evapotranspiration models were used as the basis to construct a modified transpiration model suitable for controlled environment conditions. Specially, constructed self-watering tubs were used to measure actual transpiration to validate the model output. The model provided good agreement of measured transpiration (actual transpiration = 0.96 × calculated transpiration, R2 = 0.98; p < 0.001) with the predicted values. This was particularly so at lower LAIs. Probable reasons for the discrepancy at higher LAI are explained. Both the predicted and experimental transpiration varied from 0.21 to 0.56 mm h−1 for the range of available LAIs. The physical proportion of the shaded layer exceeded that of the sunlit layer near LAI of 3.0, however, the contribution of the sunlit layer to the total transpiration remains higher throughout the entire growing season.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1333
Author(s):  
Giuseppe Francesco Cesare Lama ◽  
Mariano Crimaldi ◽  
Vittorio Pasquino ◽  
Roberta Padulano ◽  
Giovanni Battista Chirico

Estimating the main hydrodynamic features of real vegetated water bodies is crucial to assure a balance between their hydraulic conveyance and environmental quality. Riparian vegetation stands have a high impact on vegetated channels. The present work has the aim to integrate riparian vegetation’s reflectance indices and hydrodynamics of real vegetated water flows to assess the impact of riparian vegetation morphometry on bulk drag coefficients distribution along an abandoned vegetated drainage channel fully covered by 9–10 m high Arundo donax (commonly known as giant reed) stands, starting from flow average velocities measurements at 30 cross-sections identified along the channel. A map of riparian vegetation cover was obtained through digital processing of Unnamed Aerial Vehicle (UAV)-acquired multispectral images, which represent a fast way to observe riparian plants’ traits in hardly accessible areas such as vegetated water bodies in natural conditions. In this study, the portion of riparian plants effectively interacting with flow was expressed in terms of ground-based Leaf Area Index measurements (LAI), which easily related to UAV-based Normalized Difference Vegetation Index (NDVI). The comparative analysis between Arundo donax stands NDVI and LAI map enabled the analysis of the impact of UAV-acquired multispectral imagery on bulk drag predictions along the vegetated drainage channel.


2021 ◽  
Vol 13 (8) ◽  
pp. 1427
Author(s):  
Kasturi Devi Kanniah ◽  
Chuen Siang Kang ◽  
Sahadev Sharma ◽  
A. Aldrie Amir

Mangrove is classified as an important ecosystem along the shorelines of tropical and subtropical landmasses, which are being degraded at an alarming rate despite numerous international treaties having been agreed. Iskandar Malaysia (IM) is a fast-growing economic region in southern Peninsular Malaysia, where three Ramsar Sites are located. Since the beginning of the 21st century (2000–2019), a total loss of 2907.29 ha of mangrove area has been estimated based on medium-high resolution remote sensing data. This corresponds to an annual loss rate of 1.12%, which is higher than the world mangrove depletion rate. The causes of mangrove loss were identified as land conversion to urban, plantations, and aquaculture activities, where large mangrove areas were shattered into many smaller patches. Fragmentation analysis over the mangrove area shows a reduction in the mean patch size (from 105 ha to 27 ha) and an increase in the number of mangrove patches (130 to 402), edge, and shape complexity, where smaller and isolated mangrove patches were found to be related to the rapid development of IM region. The Moderate Resolution Imaging Spectro-radiometer (MODIS) Leaf Area Index (LAI) and Gross Primary Productivity (GPP) products were used to inspect the impact of fragmentation on the mangrove ecosystem process. The mean LAI and GPP of mangrove areas that had not undergone any land cover changes over the years showed an increase from 3.03 to 3.55 (LAI) and 5.81 g C m−2 to 6.73 g C m−2 (GPP), highlighting the ability of the mangrove forest to assimilate CO2 when it is not disturbed. Similarly, GPP also increased over the gained areas (from 1.88 g C m−2 to 2.78 g C m−2). Meanwhile, areas that lost mangroves, but replaced them with oil palm, had decreased mean LAI from 2.99 to 2.62. In fragmented mangrove patches an increase in GPP was recorded, and this could be due to the smaller patches (<9 ha) and their edge effects where abundance of solar radiation along the edges of the patches may increase productivity. The impact on GPP due to fragmentation is found to rely on the type of land transformation and patch characteristics (size, edge, and shape complexity). The preservation of mangrove forests in a rapidly developing region such as IM is vital to ensure ecosystem, ecology, environment, and biodiversity conservation, in addition to providing economical revenue and supporting human activities.


Sign in / Sign up

Export Citation Format

Share Document