Cellular and Molecular Mechanisms of Prion Disease

Author(s):  
Christina J. Sigurdson ◽  
Jason C. Bartz ◽  
Markus Glatzel

Prion diseases are rapidly progressive, incurable neurodegenerative disorders caused by misfolded, aggregated proteins known as prions, which are uniquely infectious. Remarkably, these infectious proteins have been responsible for widespread disease epidemics, including kuru in humans, bovine spongiform encephalopathy in cattle, and chronic wasting disease in cervids, the latter of which has spread across North America and recently appeared in Norway and Finland. The hallmark histopathological features include widespread spongiform encephalopathy, neuronal loss, gliosis, and deposits of variably sized aggregated prion protein, ranging from small, soluble oligomers to long, thin, unbranched fibrils, depending on the disease. Here, we explore recent advances in prion disease research, from the function of the cellular prion protein to the dysfunction triggering neurotoxicity, as well as mechanisms underlying prion spread between cells. We also highlight key findings that have revealed new therapeutic targets and consider unanswered questions for future research.

2019 ◽  
Vol 53 (1) ◽  
pp. 117-147 ◽  
Author(s):  
Simon Mead ◽  
Sarah Lloyd ◽  
John Collinge

Mammalian prion diseases are a group of neurodegenerative conditions caused by infection of the central nervous system with proteinaceous agents called prions, including sporadic, variant, and iatrogenic Creutzfeldt-Jakob disease; kuru; inherited prion disease; sheep scrapie; bovine spongiform encephalopathy; and chronic wasting disease. Prions are composed of misfolded and multimeric forms of the normal cellular prion protein (PrP). Prion diseases require host expression of the prion protein gene ( PRNP) and a range of other cellular functions to support their propagation and toxicity. Inherited forms of prion disease are caused by mutation of PRNP, whereas acquired and sporadically occurring mammalian prion diseases are controlled by powerful genetic risk and modifying factors. Whereas some PrP amino acid variants cause the disease, others confer protection, dramatically altered incubation times, or changes in the clinical phenotype. Multiple mechanisms, including interference with homotypic protein interactions and the selection of the permissible prion strains in a host, play a role. Several non- PRNP factors have now been uncovered that provide insights into pathways of disease susceptibility or neurotoxicity.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2453
Author(s):  
Zoe J. Lambert ◽  
Justin J. Greenlee ◽  
Eric D. Cassmann ◽  
M. Heather West Greenlee

Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of neurodegenerative protein misfolding diseases that invariably cause death. TSEs occur when the endogenous cellular prion protein (PrPC) misfolds to form the pathological prion protein (PrPSc), which templates further conversion of PrPC to PrPSc, accumulates, and initiates a cascade of pathologic processes in cells and tissues. Different strains of prion disease within a species are thought to arise from the differential misfolding of the prion protein and have different clinical phenotypes. Different strains of prion disease may also result in differential accumulation of PrPSc in brain regions and tissues of natural hosts. Here, we review differential accumulation that occurs in the retinal ganglion cells, cerebellar cortex and white matter, and plexuses of the enteric nervous system in cattle with bovine spongiform encephalopathy, sheep and goats with scrapie, cervids with chronic wasting disease, and humans with prion diseases. By characterizing TSEs in their natural host, we can better understand the pathogenesis of different prion strains. This information is valuable in the pursuit of evaluating and discovering potential biomarkers and therapeutics for prion diseases.


2021 ◽  
Vol 134 (17) ◽  
Author(s):  
Caihong Zhu ◽  
Adriano Aguzzi

ABSTRACT Prion diseases are neurodegenerative disorders caused by conformational conversion of the cellular prion protein (PrPC) into scrapie prion protein (PrPSc). As the main component of prion, PrPSc acts as an infectious template that recruits and converts normal cellular PrPC into its pathogenic, misfolded isoform. Intriguingly, the phenomenon of prionoid, or prion-like, spread has also been observed in many other disease-associated proteins, such as amyloid β (Aβ), tau and α-synuclein. This Cell Science at a Glance and the accompanying poster highlight recently described physiological roles of prion protein and the advanced understanding of pathogenesis of prion disease they have afforded. Importantly, prion protein may also be involved in the pathogenesis of other neurodegenerative disorders such as Alzheimer's and Parkinson's disease. Therapeutic studies of prion disease have also exploited novel strategies to combat these devastating diseases. Future studies on prion protein and prion disease will deepen our understanding of the pathogenesis of a broad spectrum of neurodegenerative conditions.


2005 ◽  
Vol 86 (9) ◽  
pp. 2635-2644 ◽  
Author(s):  
Azadeh Khalili-Shirazi ◽  
Linda Summers ◽  
Jacqueline Linehan ◽  
Gary Mallinson ◽  
David Anstee ◽  
...  

Prion diseases involve conversion of host-encoded cellular prion protein (PrPC) to a disease-related isoform (PrPSc). Using recombinant human β-PrP, a panel of monoclonal antibodies was produced that efficiently immunoprecipitated native PrPSc and recognized epitopes between residues 93–105, indicating for the first time that this region is exposed in both human vCJD and mouse RML prions. In contrast, monoclonal antibodies raised to human α-PrP were more efficient in immunoprecipitating PrPC than PrPSc, and some of them could also distinguish between different PrP glycoforms. Using these monoclonal antibodies, the physical association of PrP glycoforms was studied in normal brain and in the brains of humans and mice with prion disease. It was shown that while PrPC glycoforms can be selectively immunoprecipitated, the differentially glycosylated molecules of native PrPSc are closely associated and always immunoprecipitate together. Furthermore, the ratio of glycoforms comprising immunoprecipitated native PrPSc from diverse prion strains was similar to those observed on denaturing Western blots. These studies are consistent with the view that the proportion of each glycoform incorporated into PrPSc is probably controlled in a strain-specific manner and that each PrPSc particle contains a mixture of glycoforms.


2006 ◽  
Vol 81 (6) ◽  
pp. 2831-2837 ◽  
Author(s):  
Eric M. Norstrom ◽  
Mark F. Ciaccio ◽  
Benjamin Rassbach ◽  
Robert Wollmann ◽  
James A. Mastrianni

ABSTRACT Prion diseases are transmissible neurodegenerative diseases caused by a conformational isoform of the prion protein (PrP), a host-encoded cell surface sialoglycoprotein. Recent evidence suggests a cytosolic fraction of PrP (cyPrP) functions either as an initiating factor or toxic element of prion disease. When expressed in cultured cells, cyPrP acquires properties of the infectious conformation of PrP (PrPSc), including insolubility, protease resistance, aggregation, and toxicity. Transgenic mice (2D1 and 1D4 lines) that coexpress cyPrP and PrPC exhibit focal cerebellar atrophy, scratching behavior, and gait abnormalities suggestive of prion disease, although they lack protease-resistant PrP. To determine if the coexpression of PrPC is necessary or inhibitory to the phenotype of these mice, we crossed Tg1D4(Prnp +/+ ) mice with PrP-ablated mice (TgPrnp o/o) to generate Tg1D4(Prnp o/o) mice and followed the development of disease and pathological phenotype. We found no difference in the onset of symptoms or the clinical or pathological phenotype of disease between Tg1D4(Prnp +/+ ) and Tg1D4(Prnp o/o) mice, suggesting that cyPrP and PrPC function independently in the disease state. Additionally, Tg1D4(Prnp o/o) mice were resistant to challenge with mouse-adapted scrapie (RML), suggesting cyPrP is inaccessible to PrPSc. We conclude that disease phenotype and cellular toxicity associated with the expression of cyPrP are independent of PrPC and the generation of typical prion disease.


2020 ◽  
Vol 21 (19) ◽  
pp. 7260
Author(s):  
Keiji Uchiyama ◽  
Hironori Miyata ◽  
Yoshitaka Yamaguchi ◽  
Morikazu Imamura ◽  
Mariya Okazaki ◽  
...  

Conformational conversion of the cellular prion protein, PrPC, into the abnormally folded isoform, PrPSc, is a key pathogenic event in prion diseases. However, the exact conversion mechanism remains largely unknown. Transgenic mice expressing PrP with a deletion of the central residues 91–106 were generated in the absence of endogenous PrPC, designated Tg(PrP∆91–106)/Prnp0/0 mice and intracerebrally inoculated with various prions. Tg(PrP∆91–106)/Prnp0/0 mice were resistant to RML, 22L and FK-1 prions, neither producing PrPSc∆91–106 or prions in the brain nor developing disease after inoculation. However, they remained marginally susceptible to bovine spongiform encephalopathy (BSE) prions, developing disease after elongated incubation times and accumulating PrPSc∆91–106 and prions in the brain after inoculation with BSE prions. Recombinant PrP∆91-104 converted into PrPSc∆91–104 after incubation with BSE-PrPSc-prions but not with RML- and 22L–PrPSc-prions, in a protein misfolding cyclic amplification assay. However, digitonin and heparin stimulated the conversion of PrP∆91–104 into PrPSc∆91–104 even after incubation with RML- and 22L-PrPSc-prions. These results suggest that residues 91–106 or 91–104 of PrPC are crucially involved in prion pathogenesis in a strain-dependent manner and may play a similar role to digitonin and heparin in the conversion of PrPC into PrPSc.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Francesca Properzi ◽  
Maurizio Pocchiari

Transmissible spongiform encephalopathy (TSE) or prion diseases are fatal rare neurodegenerative disorders affecting man and animals and caused by a transmissible infectious agent. TSE diseases are characterized by spongiform brain lesions with neuronal loss and the abnormal deposition in the CNS, and to less extent in other tissues, of an insoluble and protease resistant form of the cellular prion protein (PrPC), namedPrPTSE. In man, TSE diseases affect usually people over 60 years of age with no evident disease-associated risk factors. In some cases, however, TSE diseases are unequivocally linked to infectious episodes related to the use of prion-contaminated medicines, medical devices, or meat products as in the variant Creutzfeldt-Jakob disease (CJD). Clinical signs occur months or years after infection, and during this silent periodPrPTSE, the only reliable marker of infection, is not easily measurable in blood or other accessible tissues or body fluids causing public health concerns. To overcome the limit ofPrPTSEdetection, several highly sensitive assays have been developed, but attempts to apply these techniques to blood of infected hosts have been unsuccessful or not yet validated. An update on the latest advances for the detection of misfolded prion protein in body fluids is provided.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 691
Author(s):  
Cristina Acín ◽  
Rosa Bolea ◽  
Marta Monzón ◽  
Eva Monleón ◽  
Bernardino Moreno ◽  
...  

Prion diseases, such as scrapie, are neurodegenerative diseases with a fatal outcome, caused by a conformational change of the cellular prion protein (PrPC), originating with the pathogenic form (PrPSc). Classical scrapie in small ruminants is the paradigm of prion diseases, as it was the first transmissible spongiform encephalopathy (TSE) described and is the most studied. It is necessary to understand the etiological properties, the relevance of the transmission pathways, the infectivity of the tissues, and how we can improve the detection of the prion protein to encourage detection of the disease. The aim of this review is to perform an overview of classical and atypical scrapie disease in sheep and goats, detailing those special issues of the disease, such as genetic factors, diagnostic procedures, and surveillance approaches carried out in the European Union with the objective of controlling the dissemination of scrapie disease.


Biomolecules ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 466
Author(s):  
Leonor Orge ◽  
Carla Lima ◽  
Carla Machado ◽  
Paula Tavares ◽  
Paula Mendonça ◽  
...  

Transmissible Spongiform Encephalopathies (TSEs) or prion diseases are a fatal group of infectious, inherited and spontaneous neurodegenerative diseases affecting human and animals. They are caused by the conversion of cellular prion protein (PrPC) into a misfolded pathological isoform (PrPSc or prion- proteinaceous infectious particle) that self-propagates by conformational conversion of PrPC. Yet by an unknown mechanism, PrPC can fold into different PrPSc conformers that may result in different prion strains that display specific disease phenotype (incubation time, clinical signs and lesion profile). Although the pathways for neurodegeneration as well as the involvement of brain inflammation in these diseases are not well understood, the spongiform changes, neuronal loss, gliosis and accumulation of PrPSc are the characteristic neuropathological lesions. Scrapie affecting small ruminants was the first identified TSE and has been considered the archetype of prion diseases, though atypical and new animal prion diseases continue to emerge highlighting the importance to investigate the lesion profile in naturally affected animals. In this report, we review the neuropathology and the neuroinflammation of animal prion diseases in natural hosts from scrapie, going through the zoonotic bovine spongiform encephalopathy (BSE), the chronic wasting disease (CWD) to the newly identified camel prion disease (CPD).


2022 ◽  
Author(s):  
Jinming Wu ◽  
Asvin KK Lakkaraju ◽  
Adriano KK Aguzzi ◽  
Jinghui Luo

Prion disease is a fatal neurodegenerative disorder, in which the cellular prion protein PrPC is converted to a misfolded prion which in turn is hypothesized to permeabilize cellular membranes. The pathways leading to toxicity in prion disease are not yet completely elucidated and whether it also includes formation of membrane pores remains to be answered. Prion protein consists of two domains: a globular domain (GD) and a flexible N-terminus (FT) domain. Although a proximal nine polybasic amino acid (FT(23-31)) sequence of FT is a prerequisite for cellular membrane permeabilization, other functional domain regions may influence FT(23-31) and its permeabilization. By using single-channel electrical recordings, we reveal that FT(23-50) dominates the membrane permeabilization within the full-length mouse PrP (mPrP(23-230)). The other domain of FT(51-110) or C-terminal domain down-regulates the channel activity of FT(23-50) and the full-length mouse PrP (mPrP(23-230)). The addition of prion mimetic antibody, POM1 significantly enhances mPrP(23-230) membrane permeabilization, whereas POM1-Y104A, a POM1 mutant that binds to PrP but cannot elicit toxicity has negligible effect on membrane permeabilization. Additionally, anti-N-terminal antibody POM2 or Cu2+ stabilizes FT domain, thus provoking FT(23-110) channel activity. Furthermore, our setup provides a more direct method without an external fused protein to study the channel activity of truncated PrP in the lipid membranes. We therefore hypothesize that the primary N-terminal residues are essential for membranes permeabilization and other functional segments play a vital role to modulate the pathological effects of PrP-medicated neurotoxicity. This may yield essential insights into molecular mechanisms of prion neurotoxicity to cellular membranes in prion disease.


Sign in / Sign up

Export Citation Format

Share Document