Understanding the Genetic Basis of C4 Kranz Anatomy with a View to Engineering C3 Crops

2018 ◽  
Vol 52 (1) ◽  
pp. 249-270 ◽  
Author(s):  
Olga V. Sedelnikova ◽  
Thomas E. Hughes ◽  
Jane A. Langdale

One of the most remarkable examples of convergent evolution is the transition from C3 to C4 photosynthesis, an event that occurred on over 60 independent occasions. The evolution of C4 is particularly noteworthy because of the complexity of the developmental and metabolic changes that took place. In most cases, compartmentalized metabolic reactions were facilitated by the development of a distinct leaf anatomy known as Kranz. C4 Kranz anatomy differs from ancestral C3 anatomy with respect to vein spacing patterns across the leaf, cell-type specification around veins, and cell-specific organelle function. Here we review our current understanding of how Kranz anatomy evolved and how it develops, with a focus on studies that are dissecting the underlying genetic mechanisms. This research field has gained prominence in recent years because understanding the genetic regulation of Kranz may enable the C3-to-C4 transition to be engineered, an endeavor that would significantly enhance crop productivity.

Plants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 433 ◽  
Author(s):  
James W. Satterlee ◽  
Michael J. Scanlon

Leaves are initiated as lateral outgrowths from shoot apical meristems throughout the vegetative life of the plant. To achieve proper developmental patterning, cell-type specification and growth must occur in an organized fashion along the proximodistal (base-to-tip), mediolateral (central-to-edge), and adaxial–abaxial (top-bottom) axes of the developing leaf. Early studies of mutants with defects in patterning along multiple leaf axes suggested that patterning must be coordinated across developmental axes. Decades later, we now recognize that a highly complex and interconnected transcriptional network of patterning genes and hormones underlies leaf development. Here, we review the molecular genetic mechanisms by which leaf development is coordinated across leaf axes. Such coordination likely plays an important role in ensuring the reproducible phenotypic outcomes of leaf morphogenesis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Cory A. Berger ◽  
Michael S. Brewer ◽  
Nobuaki Kono ◽  
Hiroyuki Nakamura ◽  
Kazuharu Arakawa ◽  
...  

Abstract Background A striking aspect of evolution is that it often converges on similar trajectories. Evolutionary convergence can occur in deep time or over short time scales, and is associated with the imposition of similar selective pressures. Repeated convergent events provide a framework to infer the genetic basis of adaptive traits. The current study examines the genetic basis of secondary web loss within web-building spiders (Araneoidea). Specifically, we use a lineage of spiders in the genus Tetragnatha (Tetragnathidae) that has diverged into two clades associated with the relatively recent (5 mya) colonization of, and subsequent adaptive radiation within, the Hawaiian Islands. One clade has adopted a cursorial lifestyle, and the other has retained the ancestral behavior of capturing prey with sticky orb webs. We explore how these behavioral phenotypes are reflected in the morphology of the spinning apparatus and internal silk glands, and the expression of silk genes. Several sister families to the Tetragnathidae have undergone similar web loss, so we also ask whether convergent patterns of selection can be detected in these lineages. Results The cursorial clade has lost spigots associated with the sticky spiral of the orb web. This appears to have been accompanied by loss of silk glands themselves. We generated phylogenies of silk proteins (spidroins), which showed that the transcriptomes of cursorial Tetragnatha contain all major spidroins except for flagelliform. We also found an uncharacterized spidroin that has higher expression in cursorial species. We found evidence for convergent selection acting on this spidroin, as well as genes involved in protein metabolism, in the cursorial Tetragnatha and divergent cursorial lineages in the families Malkaridae and Mimetidae. Conclusions Our results provide strong evidence that independent web loss events and the associated adoption of a cursorial lifestyle are based on similar genetic mechanisms. Many genes we identified as having evolved convergently are associated with protein synthesis, degradation, and processing, which are processes that play important roles in silk production. This study demonstrates, in the case of independent evolution of web loss, that similar selective pressures act on many of the same genes to produce the same phenotypes and behaviors.


2011 ◽  
Vol 286 (50) ◽  
pp. 42971-42980 ◽  
Author(s):  
Morgan S. Gadd ◽  
Mugdha Bhati ◽  
Cy M. Jeffries ◽  
David B. Langley ◽  
Jill Trewhella ◽  
...  

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Aminah T Ali ◽  
Lena Boehme ◽  
Guillermo Carbajosa ◽  
Vlad C Seitan ◽  
Kerrin S Small ◽  
...  

Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.


2021 ◽  
Author(s):  
Qiwei Chen ◽  
Yu Zhang ◽  
Kun Li ◽  
Zhikai Zhang ◽  
Ya Wang ◽  
...  

Abstract Background: Organoid is an artificially grown mass of cells or tissues, which is similar to an organ. It can replicate the complexity of an organ and can be used for gaining a better understanding of diseases. In this study, the hot spots of “organoids” were classified into 6 categories and 10 aspects, and organoids used for studying genetic mechanisms, drug effect, and metabolism of tumors showed the greatest potential for future development.Methods: A total of 1550 articles relevant to organoid in tumor research field were recruited as research samples. High-frequency words and text/co-word matrix were constructed by BICOMB software. gCLUTO software was applied to analyze the matrix by double-clustering and visual analysis subsequently to identify the hotspot in this area.Results: We constructed a text and co-word matrix composed of 21 high-frequency words and 1550 articles and generated a hotspot “peak map” based on double-clustering analysis. The strategic coordinates approach was used to assess the research prospects of each hotspot and the connections between these hotspots.Conclusions: In this study, we classified the hot-spots of “organoid” into 6 categories and 10 aspects. Calculation and analysis revealed that the field of tumor organoid shows a slight trend of polarization, and organoid for studying the genetic mechanisms, drug effects and metabolism of tumor shows the greatest potential for future development.


2021 ◽  
pp. 333-351
Author(s):  
Joanna Yeung ◽  
Matt Larouche ◽  
Miguel Ramirez ◽  
Rémi Robert ◽  
Dan Goldowitz

Nutrients ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2689
Author(s):  
Augusto Anguita-Ruiz ◽  
Concepción M. Aguilera ◽  
Ángel Gil

In humans the ability to digest milk lactose is conferred by a β-galactosidase enzyme called lactase-phlorizin hydrolase (LPH). While in some humans (approximately two-thirds of humankind) the levels of this enzyme decline drastically after the weaning phase (a trait known as lactase non-persistence (LNP)), some other individuals are capable of maintaining high levels of LPH lifelong (lactase persistence (LP)), thus being able to digest milk during adulthood. Both lactase phenotypes in humans present a complex genetic basis and have been widely investigated during the last decades. The distribution of lactase phenotypes and their associated single nucleotide polymorphisms (SNPs) across human populations has also been extensively studied, though not recently reviewed. All available information has always been presented in the form of static world maps or large dimension tables, so that it would benefit from the newly available visualization tools, such as interactive world maps. Taking all this into consideration, the aims of the present review were: (1) to gather and summarize all available information on LNP and LP genetic mechanisms and evolutionary adaptation theories, and (2) to create online interactive world maps, including all LP phenotype and genotype frequency data reported to date. As a result, we have created two online interactive resources, which constitute an upgrade over previously published static world maps, and allow users a personalized data exploration, while at the same time accessing complete reports by population or ethnicity.


Sign in / Sign up

Export Citation Format

Share Document