Control of RNA Stability in Immunity

2021 ◽  
Vol 39 (1) ◽  
Author(s):  
Shizuo Akira ◽  
Kazuhiko Maeda

Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3′ untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3′ UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Christian K. Pfaller ◽  
Cyril X. George ◽  
Charles E. Samuel

C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Feng Xiong ◽  
Ruoyu Wang ◽  
Joo-Hyung Lee ◽  
Shenglan Li ◽  
Shin-Fu Chen ◽  
...  

AbstractThe molecular basis underlying the interaction between retrotransposable elements (RTEs) and the human genome remains poorly understood. Here, we profiled N6-methyladenosine (m6A) deposition on nascent RNAs in human cells by developing a new method MINT-Seq, which revealed that many classes of RTE RNAs, particularly intronic LINE-1s (L1s), are strongly methylated. These m6A-marked intronic L1s (MILs) are evolutionarily young, sense-oriented to hosting genes, and are bound by a dozen RNA binding proteins (RBPs) that are putative novel readers of m6A-modified RNAs, including a nuclear matrix protein SAFB. Notably, m6A positively controls the expression of both autonomous L1s and co-transcribed L1 relics, promoting L1 retrotransposition. We showed that MILs preferentially reside in long genes with critical roles in DNA damage repair and sometimes in L1 suppression per se, where they act as transcriptional “roadblocks” to impede the hosting gene expression, revealing a novel host-weakening strategy by the L1s. In counteraction, the host uses the SAFB reader complex to bind m6A-L1s to reduce their levels, and to safeguard hosting gene transcription. Remarkably, our analysis identified thousands of MILs in multiple human fetal tissues, enlisting them as a novel category of cell-type-specific regulatory elements that often compromise transcription of long genes and confer their vulnerability in neurodevelopmental disorders. We propose that this m6A-orchestrated L1–host interaction plays widespread roles in gene regulation, genome integrity, human development and diseases.


2021 ◽  
Author(s):  
Nicolai von Kuegelgen ◽  
Samantha Mendonsa ◽  
Sayaka Dantsuji ◽  
Maya Ron ◽  
Marieluise Kirchner ◽  
...  

Cells adopt highly polarized shapes and form distinct subcellular compartments largely due to the localization of many mRNAs to specific areas, where they are translated into proteins with local functions. This mRNA localization is mediated by specific cis-regulatory elements in mRNAs, commonly called "zipcodes." Their recognition by RNA-binding proteins (RBPs) leads to the integration of the mRNAs into macromolecular complexes and their localization. While there are hundreds of localized mRNAs, only a few zipcodes have been characterized. Here, we describe a novel neuronal zipcode identification protocol (N-zip) that can identify zipcodes across hundreds of 3'UTRs. This approach combines a method of separating the principal subcellular compartments of neurons - cell bodies and neurites - with a massively parallel reporter assay. Our analysis identifies the let-7 binding site and (AU)n motif as de novo zipcodes in mouse primary cortical neurons and suggests a strategy for detecting many more.


Author(s):  
Sihan Wu ◽  
Vineet Bafna ◽  
Howard Y. Chang ◽  
Paul S. Mischel

Human genes are arranged on 23 pairs of chromosomes, but in cancer, tumor-promoting genes and regulatory elements can free themselves from chromosomes and relocate to circular, extrachromosomal pieces of DNA (ecDNA). ecDNA, because of its nonchromosomal inheritance, drives high-copy-number oncogene amplification and enables tumors to evolve their genomes rapidly. Furthermore, the circular ecDNA architecture fundamentally alters gene regulation and transcription, and the higher-order organization of ecDNA contributes to tumor pathogenesis. Consequently, patients whose cancers harbor ecDNA have significantly shorter survival. Although ecDNA was first observed more than 50 years ago, its critical importance has only recently come to light. In this review, we discuss the current state of understanding of how ecDNAs form and function as well as how they contribute to drug resistance and accelerated cancer evolution. Expected final online publication date for the Annual Review of Pathology: Mechanisms of Disease, Volume 17 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Scott I Adamson ◽  
Lijun Zhan ◽  
Brenton R Graveley

Background: RNA binding protein-RNA interactions mediate a variety of processes including pre-mRNA splicing, translation, decay, polyadenylation and many others. Previous high-throughput studies have characterized general sequence features associated with increased and decreased splicing of certain exons, but these studies are limited by not knowing the mechanisms, and in particular, the mediating RNA binding proteins, underlying these associations. Results: Here we utilize ENCODE data from diverse data modalities to identify functional splicing regulatory elements and their associated RNA binding proteins. We identify features which make splicing events more sensitive to depletion of RNA binding proteins, as well as which RNA binding proteins act as splicing regulators sensitive to depletion. To analyze the sequence determinants underlying RBP-RNA interactions impacting splicing, we assay tens of thousands of sequence variants in a high-throughput splicing reporter called Vex-seq and confirm a small subset in their endogenous loci using CRISPR base editors. Finally, we leverage other large transcriptomic datasets to confirm the importance of RNA binding proteins which we designed experiments around and identify additional RBPs which may act as additional splicing regulators of the exons studied. Conclusions: This study identifies sequence and other features underlying splicing regulation mediated specific RNA binding proteins, as well as validates and identifies other potentially important regulators of splicing in other large transcriptomic datasets.


2016 ◽  
Author(s):  
Shuya Li ◽  
Fanghong Dong ◽  
Yuexin Wu ◽  
Sai Zhang ◽  
Chen Zhang ◽  
...  

AbstractCharacterizing the binding behaviors of RNA-binding proteins (RBPs) is important for understanding their functional roles in gene expression regulation. However, current high-throughput experimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer from the false positive and false negative issues. Here, we develop a deep boosting based machine learning approach, called DeBooster, to accurately model the binding sequence preferences and identify the corresponding binding targets of RBPs from CLIP-seq data. Comprehensive validation tests have shown that DeBooster can outperform other state-of-the-art approaches in predicting RBP targets and recover false negatives that are common in current CLIP-seq data. In addition, we have demonstrated several new potential applications of DeBooster in understanding the regulatory functions of RBPs, including the binding effects of the RNA helicase MOV10 on mRNA degradation, the influence of different binding behaviors of the ADAR proteins on RNA editing, as well as the antagonizing effect of RBP binding on miRNA repression. Moreover, DeBooster may provide an effective index to investigate the effect of pathogenic mutations in RBP binding sites, especially those related to splicing events. We expect that DeBooster will be widely applied to analyze large-scale CLIP-seq experimental data and can provide a practically useful tool for novel biological discoveries in understanding the regulatory mechanisms of RBPs.


2021 ◽  
Vol 72 (1) ◽  
Author(s):  
Zane Duxbury ◽  
Chih-hang Wu ◽  
Pingtao Ding

Nucleotide-binding domain leucine-rich repeat receptors (NLRs) play important roles in the innate immune systems of both plants and animals. Recent breakthroughs in NLR biochemistry and biophysics have revolutionized our understanding of how NLR proteins function in plant immunity. In this review, we summarize the latest findings in plant NLR biology and draw direct comparisons to NLRs of animals. We discuss different mechanisms by which NLRs recognize their ligands in plants and animals. The discovery of plant NLR resistosomes that assemble in a comparable way to animal inflammasomes reinforces the striking similarities between the formation of plant and animal NLR complexes. Furthermore, we discuss the mechanisms by which plant NLRs mediate immune responses and draw comparisons to similar mechanisms identified in animals. Finally, we summarize the current knowledge of the complex genetic architecture formed by NLRs in plants and animals and the roles of NLRs beyond pathogen detection. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jeetayu Biswas ◽  
Vivek L. Patel ◽  
Varun Bhaskar ◽  
Jeffrey A. Chao ◽  
Robert H. Singer ◽  
...  

Abstract The IGF2 mRNA-binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine systematic evolution of ligands by exponential enrichment (SELEX) and NMR spectroscopy to demonstrate that the major RNA-binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.


2019 ◽  
Vol 316 (1) ◽  
pp. G197-G204 ◽  
Author(s):  
Louis R. Parham ◽  
Patrick A. Williams ◽  
Priya Chatterji ◽  
Kelly A. Whelan ◽  
Kathryn E. Hamilton

Intestinal epithelial cells are among the most rapidly proliferating cell types in the human body. There are several different subtypes of epithelial cells, each with unique functional roles in responding to the ever-changing environment. The epithelium’s ability for rapid and customized responses to environmental changes requires multitiered levels of gene regulation. An emerging paradigm in gastrointestinal epithelial cells is the regulation of functionally related mRNA families, or regulons, via RNA-binding proteins (RBPs). RBPs represent a rapid and efficient mechanism to regulate gene expression and cell function. In this review, we will provide an overview of intestinal epithelial RBPs and how they contribute specifically to intestinal epithelial stem cell dynamics. In addition, we will highlight key gaps in knowledge in the global understanding of RBPs in gastrointestinal physiology as an opportunity for future studies.


2020 ◽  
Vol 21 (12) ◽  
pp. 4548 ◽  
Author(s):  
Kwanuk Lee ◽  
Hunseung Kang

Organellar gene expression (OGE) in chloroplasts and mitochondria is primarily modulated at post-transcriptional levels, including RNA processing, intron splicing, RNA stability, editing, and translational control. Nucleus-encoded Chloroplast or Mitochondrial RNA-Binding Proteins (nCMRBPs) are key regulatory factors that are crucial for the fine-tuned regulation of post-transcriptional RNA metabolism in organelles. Although the functional roles of nCMRBPs have been studied in plants, their cellular and physiological functions remain largely unknown. Nevertheless, existing studies that have characterized the functions of nCMRBP families, such as chloroplast ribosome maturation and splicing domain (CRM) proteins, pentatricopeptide repeat (PPR) proteins, DEAD-Box RNA helicase (DBRH) proteins, and S1-domain containing proteins (SDPs), have begun to shed light on the role of nCMRBPs in plant growth, development, and stress responses. Here, we review the latest research developments regarding the functional roles of organellar RBPs in RNA metabolism during growth, development, and abiotic stress responses in plants.


Sign in / Sign up

Export Citation Format

Share Document