Nutritional Regulation of Intestinal Stem Cells

2018 ◽  
Vol 38 (1) ◽  
pp. 273-301 ◽  
Author(s):  
Salvador Alonso ◽  
Ömer H. Yilmaz

Dietary composition and calorie intake are major determinants of health and disease. Calorie restriction promotes metabolic changes that favor tissue regeneration and is arguably the most successful and best-conserved antiaging intervention. Obesity, in contrast, impairs tissue homeostasis and is a major risk factor for the development of diseases including cancer. Stem cells, the central mediators of tissue regeneration, integrate dietary and energy cues via nutrient-sensing pathways to maintain growth or respond to stress. We discuss emerging data on the effects of diet and nutrient-sensing pathways on intestinal stem cells, as well as their potential application in the development of regenerative and therapeutic interventions.

2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Kunihiro Kishida ◽  
Sarah Pearce ◽  
Shiyan Yu ◽  
Nan Gao ◽  
Ronaldo Ferraris

2017 ◽  
Vol 312 (6) ◽  
pp. G592-G605 ◽  
Author(s):  
Kunihiro Kishida ◽  
Sarah C. Pearce ◽  
Shiyan Yu ◽  
Nan Gao ◽  
Ronaldo P. Ferraris

Nutrient sensing triggers responses by the gut-brain axis modulating hormone release, feeding behavior and metabolism that become dysregulated in metabolic syndrome and some cancers. Except for absorptive enterocytes and secretory enteroendocrine cells, the ability of many intestinal cell types to sense nutrients is still unknown; hence we hypothesized that progenitor stem cells (intestinal stem cells, ISC) possess nutrient sensing ability inherited by progenies during differentiation. We directed via modulators of Wnt and Notch signaling differentiation of precursor mouse intestinal crypts into specialized organoids each containing ISC, enterocyte, goblet, or Paneth cells at relative proportions much higher than in situ as determined by mRNA expression and immunocytochemistry of cell type biomarkers. We identified nutrient sensing cell type(s) by increased expression of fructolytic genes in response to a fructose challenge. Organoids comprised primarily of enterocytes, Paneth, or goblet, but not ISC, cells responded specifically to fructose without affecting nonfructolytic genes. Sensing was independent of Wnt and Notch modulators and of glucose concentrations in the medium but required fructose absorption and metabolism. More mature enterocyte- and goblet-enriched organoids exhibited stronger fructose responses. Remarkably, enterocyte organoids, upon forced dedifferentiation to reacquire ISC characteristics, exhibited a markedly extended lifespan and retained fructose sensing ability, mimicking responses of some dedifferentiated cancer cells. Using an innovative approach, we discovered that nutrient sensing is likely repressed in progenitor ISCs then irreversibly derepressed during specification into sensing-competent absorptive or secretory lineages, the surprising capacity of Paneth and goblet cells to detect fructose, and the important role of differentiation in modulating nutrient sensing. NEW & NOTEWORTHY Small intestinal stem cells differentiate into several cell types transiently populating the villi. We used specialized organoid cultures each comprised of a single cell type to demonstrate that 1) differentiation seems required for nutrient sensing, 2) secretory goblet and Paneth cells along with enterocytes sense fructose, suggesting that sensing is acquired after differentiation is triggered but before divergence between absorptive and secretory lineages, and 3) forcibly dedifferentiated enterocytes exhibit fructose sensing and lifespan extension.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaoyu Tracy Cai ◽  
Hongjie Li ◽  
Abu Safyan ◽  
Jennifer Gawlik ◽  
George Pyrowolakis ◽  
...  

2018 ◽  
Author(s):  
Daniel Jun-Kit Hu ◽  
Heinrich Jasper

AbstractHomeostasis in high-turnover tissues depends on precise yet plastic regulation of stem cell daughter fates. In Drosophila, intestinal stem cells (ISCs) respond to unknown signals to switch from asymmetric to symmetric divisions during feeding-induced growth. Here, we show that this switch is controlled by dynamic reorientation of mitotic spindles by a Jun-N-terminal Kinase (JNK) / Wdr62 / Kif1a interaction. JNK promotes Wdr62 localization at the spindle and represses transcription of the kinesin Kif1a. This activity of JNK results in over-abundance of symmetric divisions in stress conditions, and contributes to the loss of tissue homeostasis in the aging animal. Restoring normal ISC spindle orientation by perturbing the JNK/Wdr62/Kif1a axis is sufficient to improve intestinal physiology and extend lifespan. Our findings reveal a critical role for the dynamic control of SC spindle orientation in epithelial maintenance.


2019 ◽  
Vol 7 (10) ◽  
pp. 4310-4324 ◽  
Author(s):  
Rasha H. Dosh ◽  
Nicola Jordan-Mahy ◽  
Christopher Sammon ◽  
Christine L. Le Maitre

Intestinal stem cells hold great potential in tissue regeneration of the intestine, however, there are key limitations in their culture in vitro.


2019 ◽  
Vol 20 (15) ◽  
pp. 3738 ◽  
Author(s):  
Francisco Vizoso ◽  
Noemi Eiro ◽  
Luis Costa ◽  
Paloma Esparza ◽  
Mariana Landin ◽  
...  

Mesenchymal stem cells (MSCs) are present in all organs and tissues, playing a well-known function in tissue regeneration. However, there is also evidence indicating a broader role of MSCs in tissue homeostasis. In vivo studies have shown MSC paracrine mechanisms displaying proliferative, immunoregulatory, anti-oxidative, or angiogenic activity. In addition, recent studies also demonstrate that depletion and/or dysfunction of MSCs are associated with several systemic diseases, such as lupus, diabetes, psoriasis, and rheumatoid arthritis, as well as with aging and frailty syndrome. In this review, we hypothesize about the role of MSCs as keepers of tissue homeostasis as well as modulators in a variety of inflammatory and degenerative systemic diseases. This scenario opens the possibility for the use of secretome-derived products from MSCs as new therapeutic agents in order to restore tissue homeostasis, instead of the classical paradigm “one disease, one drug”.


2017 ◽  
Vol 216 (8) ◽  
pp. 2231-2231
Author(s):  
Ben Short

Mitochondrial turnover regulates stem cell proliferation and tissue homeostasis in Drosophila intestines.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Helen M Tauc ◽  
Imilce A Rodriguez-Fernandez ◽  
Jason A Hackney ◽  
Michal Pawlak ◽  
Tal Ronnen Oron ◽  
...  

Tissue homeostasis requires long-term lineage fidelity of somatic stem cells. Whether and how age-related changes in somatic stem cells impact the faithful execution of lineage decisions remains largely unknown. Here, we address this question using genome-wide chromatin accessibility and transcriptome analysis as well as single cell RNA-seq to explore stem cell-intrinsic changes in the aging Drosophila intestine. These studies indicate that in stem cells of old flies, promoters of Polycomb (Pc) target genes become differentially accessible, resulting in the increased expression of enteroendocrine (EE) cell specification genes. Consistently, we find age-related changes in the composition of the EE progenitor cell population in aging intestines, as well as a significant increase in the proportion of EE-specified intestinal stem cells (ISCs) and progenitors in aging flies. We further confirm that Pc-mediated chromatin regulation is a critical determinant of EE cell specification in the Drosophila intestine. Pc is required to maintain expression of stem cell genes while ensuring repression of differentiation and specification genes. Our results identify Pc group proteins as central regulators of lineage identity in the intestinal epithelium and highlight the impact of age-related decline in chromatin regulation on tissue homeostasis.


2021 ◽  
pp. 1-28
Author(s):  
Dan Wang ◽  
Pei Li ◽  
Jack Odle ◽  
Xi Lin ◽  
Jiangchao Zhao ◽  
...  

Abstract Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mTOR and AMPK. Herein, we summarize the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.


2021 ◽  
Author(s):  
Chenhui Wang ◽  
Allan C. Spradling

AbstractDrosophila renal stem cells (RSCs) contradict the common expectation that stem cells maintain tissue homeostasis. RSCs are abundant, quiescent and confined to the peri-ureter region of the kidney-like Malpighian tubules (MTs). Although derived during pupation like intestinal stem cells, RSCs initially remodel the larval MTs only near the intestinal junction. However, following adult injury to the ureter by xanthine stones, RSCs remodel the damaged region in a similar manner. Thus, RSCs represent stem cells encoding a developmental redesign. The remodeled tubules have a larger luminal diameter and shorter brush border, changes linked to enhanced stone resistance. However, RSC-mediated modifications also raise salt sensitivity and reduce fecundity. Our results suggest that RSCs arose by arresting developmental progenitors to preserve larval physiology until a time in adulthood when it becomes advantageous to complete development by RSC activation.One-Sentence SummaryActivated Drosophila renal stem cells rebuild the adult Malphigian tubules using a less efficient but more stone-resistant design.


Sign in / Sign up

Export Citation Format

Share Document