On the Statistical Formalism of Uncertainty Quantification

2019 ◽  
Vol 6 (1) ◽  
pp. 433-460
Author(s):  
James O. Berger ◽  
Leonard A. Smith

The use of models to try to better understand reality is ubiquitous. Models have proven useful in testing our current understanding of reality; for instance, climate models of the 1980s were built for science discovery, to achieve a better understanding of the general dynamics of climate systems. Scientific insights often take the form of general qualitative predictions (i.e., “under these conditions, the Earth's poles will warm more than the rest of the planet”); such use of models differs from making quantitative forecasts of specific events (i.e. “high winds at noon tomorrow at London's Heathrow Airport”). It is sometimes hoped that, after sufficient model development, any model can be used to make quantitative forecasts for any target system. Even if that were the case, there would always be some uncertainty in the prediction. Uncertainty quantification aims to provide a framework within which that uncertainty can be discussed and, ideally, quantified, in a manner relevant to practitioners using the forecast system. A statistical formalism has developed that claims to be able to accurately assess the uncertainty in prediction. This article is a discussion of if and when this formalism can do so. The article arose from an ongoing discussion between the authors concerning this issue, the second author generally being considerably more skeptical concerning the utility of the formalism in providing quantitative decision-relevant information.

2021 ◽  
Author(s):  
Christian Zeman ◽  
Christoph Schär

<p>Since their first operational application in the 1950s, atmospheric numerical models have become essential tools in weather and climate prediction. As such, they are a constant subject to changes, thanks to advances in computer systems, numerical methods, and the ever increasing knowledge about the atmosphere of Earth. Many of the changes in today's models relate to seemingly unsuspicious modifications, associated with minor code rearrangements, changes in hardware infrastructure, or software upgrades. Such changes are meant to preserve the model formulation, yet the verification of such changes is challenged by the chaotic nature of our atmosphere - any small change, even rounding errors, can have a big impact on individual simulations. Overall this represents a serious challenge to a consistent model development and maintenance framework.</p><p>Here we propose a new methodology for quantifying and verifying the impacts of minor atmospheric model changes, or its underlying hardware/software system, by using ensemble simulations in combination with a statistical hypothesis test. The methodology can assess effects of model changes on almost any output variable over time, and can also be used with different hypothesis tests.</p><p>We present first applications of the methodology with the regional weather and climate model COSMO. The changes considered include a major system upgrade of the supercomputer used, the change from double to single precision floating-point representation, changes in the update frequency of the lateral boundary conditions, and tiny changes to selected model parameters. While providing very robust results, the methodology also shows a large sensitivity to more significant model changes, making it a good candidate for an automated tool to guarantee model consistency in the development cycle.</p>


2011 ◽  
Vol 4 (3) ◽  
pp. 571-577 ◽  
Author(s):  
A. M. Haywood ◽  
H. J. Dowsett ◽  
M. M. Robinson ◽  
D. K. Stoll ◽  
A. M. Dolan ◽  
...  

Abstract. The Palaeoclimate Modelling Intercomparison Project has expanded to include a model intercomparison for the mid-Pliocene warm period (3.29 to 2.97 million yr ago). This project is referred to as PlioMIP (the Pliocene Model Intercomparison Project). Two experiments have been agreed upon and together compose the initial phase of PlioMIP. The first (Experiment 1) is being performed with atmosphere-only climate models. The second (Experiment 2) utilises fully coupled ocean-atmosphere climate models. Following on from the publication of the experimental design and boundary conditions for Experiment 1 in Geoscientific Model Development, this paper provides the necessary description of differences and/or additions to the experimental design for Experiment 2.


2006 ◽  
Vol 6 (1) ◽  
pp. 107-173 ◽  
Author(s):  
A. Guenther ◽  
T. Karl ◽  
P. Harley ◽  
C. Wiedinmyer ◽  
P. I. Palmer ◽  
...  

Abstract. Reactive gases and aerosols are produced by terrestrial ecosystems, processed within plant canopies, and can then be emitted into the above-canopy atmosphere. Estimates of the above-canopy fluxes are needed for quantitative earth system studies and assessments of past, present and future air quality and climate. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) is described and used to quantify net terrestrial biosphere emission of isoprene into the atmosphere. MEGAN is designed for both global and regional emission modeling and has global coverage with ~1 km2 spatial resolution. Field and laboratory investigations of the processes controlling isoprene emission are described and data available for model development and evaluation are summarized. The factors controlling isoprene emissions include biological, physical and chemical driving variables. MEGAN driving variables are derived from models and satellite and ground observations. Broadleaf trees, mostly in the tropics, contribute about half of the estimated global annual isoprene emission due to their relatively high emission factors and because they are often exposed to conditions that are conducive for isoprene emission. The remaining flux is primarily from shrubs which are widespread and dominate at higher latitudes. MEGAN estimates global annual isoprene emissions of ~600 Tg isoprene but the results are very sensitive to the driving variables, including temperature, solar radiation, Leaf Area Index, and plant functional type. The annual global emission estimated with MEGAN ranges from about 500 to 750 Tg isoprene depending on the driving variables that are used. Differences in estimated emissions are more than a factor of 3 for specific times and locations. It is difficult to evaluate isoprene emission estimates using the concentration distributions simulated using chemistry and transport models due to the substantial uncertainties in other model components. However, comparison with isoprene emissions estimated from satellite formaldehyde observations indicates reasonable agreement. The sensitivity of isoprene emissions to earth system changes (e.g., climate and landcover) suggests potentially large changes in future emissions. Using temperature distributions simulated by global climate models for year 2100, MEGAN estimates that isoprene emissions increase by more than a factor of two. This is considerably greater than previous estimates and additional observations are needed to evaluate and improve the methods used to predict future isoprene emissions.


Author(s):  
Benjamin Mark Sanderson

Long-term planning for many sectors of society—including infrastructure, human health, agriculture, food security, water supply, insurance, conflict, and migration—requires an assessment of the range of possible futures which the planet might experience. Unlike short-term forecasts for which validation data exists for comparing forecast to observation, long-term forecasts have almost no validation data. As a result, researchers must rely on supporting evidence to make their projections. A review of methods for quantifying the uncertainty of climate predictions is given. The primary tool for quantifying these uncertainties are climate models, which attempt to model all the relevant processes that are important in climate change. However, neither the construction nor calibration of climate models is perfect, and therefore the uncertainties due to model errors must also be taken into account in the uncertainty quantification.Typically, prediction uncertainty is quantified by generating ensembles of solutions from climate models to span possible futures. For instance, initial condition uncertainty is quantified by generating an ensemble of initial states that are consistent with available observations and then integrating the climate model starting from each initial condition. A climate model is itself subject to uncertain choices in modeling certain physical processes. Some of these choices can be sampled using so-called perturbed physics ensembles, whereby uncertain parameters or structural switches are perturbed within a single climate model framework. For a variety of reasons, there is a strong reliance on so-called ensembles of opportunity, which are multi-model ensembles (MMEs) formed by collecting predictions from different climate modeling centers, each using a potentially different framework to represent relevant processes for climate change. The most extensive collection of these MMEs is associated with the Coupled Model Intercomparison Project (CMIP). However, the component models have biases, simplifications, and interdependencies that must be taken into account when making formal risk assessments. Techniques and concepts for integrating model projections in MMEs are reviewed, including differing paradigms of ensembles and how they relate to observations and reality. Aspects of these conceptual issues then inform the more practical matters of how to combine and weight model projections to best represent the uncertainties associated with projected climate change.


2015 ◽  
Vol 33 (28_suppl) ◽  
pp. 82-82
Author(s):  
Sangeeta Aggarwal ◽  
Mingfeng Liu ◽  
Rishi Sharma ◽  
Fred Yang ◽  
Ankit Gupta ◽  
...  

82 Background: Patients undergoing breast cancer treatment often report Symptoms of Cognitive Deficit (SCD). Many of them share their experiences on online forums, which contain millions of freely shared messages that can be used to analyze these SCD. Unfortunately, this data is unstructured, making it difficult to analyze. In this project we organize this data using methods from Big Data Science (BDS) and analyze it by creating a Decision Support System (DSS): an interface that can be used by patients and providers to understand how SCD are associated with specific types – hormonal only (HT), chemo only (CT), or both (CT/HT) – of breast cancer therapies. Methods: We collected 3.5 million unique messages from 20 unrestricted breast cancer forums that provide clinically relevant information. We next built custom ontologies for breast cancer treatments, SCD, and supportive therapies. Then, we created a DSS using methods from BDS, including topic modeling, information retrieval, and natural language processing to extract the relevant data from these messages. We also used token windows and co-occurrence-based algorithms to associate treatment with SCD and supportive therapies. To use this system, a user provides disease-related parameters and the treatment. The DSS then gives the percentage of messages discussing SCD for a similar cohort of patients and the percentage of messages that discuss supportive therapies for each of these SCD. Results: We found 15719 messages that had strong association of SCD with treatments. 3355 messages were from HT patients, 5740 messages were from CT patients, and 9095 messages were from CT/HT patients. Among HT, 28.18% patients taking aromatase inhibitors and 19.20% taking tamoxifen associated SCD to HT. Among CT, 35.26% patient receiving taxane containing chemo associated SCD to CT. SCD worsened during HT for CT/HT patients. Suggestive therapy: 80 messages found Vitamin B12 and B6 useful, 65 suggested Acetyle-L-Carnitine, and 50 suggested playing word games. Conclusions: Using methods from BDS, our DSS reliably associates SCD with HT, CT and CT/CT, and suggests supportive therapies. More research is needed to evaluate the role of supportive therapy for SCD.


Industries such as, textile, food processing, chemical and water treatment plants are part of our global development. The efficiency of processes used by them is always a matter of great importance. Efficiency can be greatly improved by obtaining an exact model of the process. This paper studies the two main classifications of model development – First-Principles Model and Empirical Model. First-Principles Model can be obtained with an understanding of the basic physics of the system. On the other hand, Empirical Models require only the input-output data and can thus factor in process non-linearity, disturbances and unexpected errors. This paper utilizes the System Identification Toolbox in MATLAB for empirical model development. Models are developed for a single tank system, a classic SISO problem and for the two interacting tank system. Both systems are studied with respect to three operating points, each from a local linear region. The obtained models are validated with the real-time setup. They are satisfactory in their closeness to the real time process and hence deemed fit for use in control algorithms and other process manipulations


2021 ◽  
Author(s):  
Priscilla A. Mooney ◽  
Diana Rechid ◽  
Edouard L. Davin ◽  
Eleni Katragkou ◽  
Natalie de Noblet-Ducoudré ◽  
...  

Abstract. Land cover in sub-polar and alpine regions of northern and eastern Europe have already begun changing due to natural and anthropogenic changes such as afforestation. This will impact the regional climate and hydrology upon which societies in these regions are highly reliant. This study aims to identify the impacts of afforestation/reforestation (hereafter afforestation) on snow and the snow-albedo effect, and highlight potential improvements for future model development. The study uses an ensemble of nine regional climate models for two different idealised experiments covering a 30-year period; one experiment replaces most land cover in Europe with forest while the other experiment replaces all forested areas with grass. The ensemble consists of nine regional climate models composed of different combinations of five regional atmospheric models and six land surface models. Results show that afforestation reduces the snow-albedo sensitivity index and enhances snow melt. While the direction of change is robustly modelled, there is still uncertainty in the magnitude of change. Greatest differences between models emerge in the snowmelt season. One regional climate model uses different land surface models which shows consistent changes between the three simulations during the accumulation period but differs in the snowmelt season. Together these results point to the need for further model development in representing both grass-snow and forest-snow interactions during the snowmelt season. Pathways to accomplishing this include 1) a more sophisticated representation of forest structure, 2) kilometer scale simulations, and 3) more observational studies on vegetation-snow interactions in Northern Europe.


2018 ◽  
Vol 75 (5) ◽  
pp. 1509-1524 ◽  
Author(s):  
Laurent Labbouz ◽  
Zak Kipling ◽  
Philip Stier ◽  
Alain Protat

Current climate models cannot resolve individual convective clouds, and hence parameterizations are needed. The primary goal of convective parameterization is to represent the bulk impact of convection on the gridbox-scale variables. Spectral convective parameterizations also aim to represent the key features of the subgrid-scale convective cloud field such as cloud-top-height distribution and in-cloud vertical velocities in addition to precipitation rates. Ground-based radar retrievals of these quantities have been made available at Darwin, Australia, permitting direct comparisons of internal parameterization variables and providing new observational references for further model development. A spectral convective parameterization [the convective cloud field model (CCFM)] is discussed, and its internal equation of motion is improved. Results from the ECHAM–HAM model in single-column mode using the CCFM and the bulk mass flux Tiedtke–Nordeng scheme are compared with the radar retrievals at Darwin. The CCFM is found to outperform the Tiedtke–Nordeng scheme for cloud-top-height and precipitation-rate distributions. Radar observations are further used to propose a modified CCFM configuration with an aerodynamic drag and reduced entrainment parameter, further improving both the convective cloud-top-height distribution (important for large-scale impact of convection) and the in-cloud vertical velocities (important for aerosol activation). This study provides a new development in the CCFM, improving the representation of convective cloud spectrum characteristics observed in Darwin. This is a step toward an improved representation of convection and ultimately of aerosol effects on convection. It also shows how long-term radar observations of convective cloud properties can help constrain parameters of convective parameterization schemes.


2018 ◽  
Vol 31 (18) ◽  
pp. 7533-7548 ◽  
Author(s):  
C. Munday ◽  
R. Washington

An important challenge for climate science is to understand the regional circulation and rainfall response to global warming. Unfortunately, the climate models used to project future changes struggle to represent present-day rainfall and circulation, especially at a regional scale. This is the case in southern Africa, where models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) overestimate summer rainfall by as much as 300% compared to observations and tend to underestimate rainfall in Madagascar and the southwest Indian Ocean. In this paper, we explore the climate processes associated with the rainfall bias, with the aim of assessing the reliability of the CMIP5 ensemble and highlighting important areas for model development. We find that the high precipitation rates in models that are wet over southern Africa are associated with an anomalous northeasterly moisture transport (~10–30 g kg−1 s−1) that penetrates across the high topography of Tanzania and Malawi and into subtropical southern Africa. This transport occurs in preference to a southeasterly recurvature toward Madagascar that is seen in drier models and reanalysis data. We demonstrate that topographically related model biases in low-level flow are important for explaining the intermodel spread in rainfall; wetter models have a reduced tendency to block the oncoming northeasterly flow compared to dry models. The differences in low-level flow among models are related to upstream wind speed and model representation of topography, both of which should be foci for model development.


Sign in / Sign up

Export Citation Format

Share Document