Metal Silicide Nanowires

2019 ◽  
Vol 11 (8) ◽  
pp. 3-6 ◽  
Author(s):  
Lih J. Chen ◽  
Wen-Wei Wu ◽  
H.C. Hsu ◽  
S.Y. Chen ◽  
Y.L. Chueh ◽  
...  
Keyword(s):  
Author(s):  
J. Hefter

Semiconductor-metal composites, formed by the eutectic solidification of silicon and a metal silicide have been under investigation for some time for a number of electronic device applications. This composite system is comprised of a silicon matrix containing extended metal-silicide rod-shaped structures aligned in parallel throughout the material. The average diameter of such a rod in a typical system is about 1 μm. Thus, characterization of the rod morphology by electron microscope methods is necessitated.The types of morphometric information that may be obtained from such microscopic studies coupled with image processing are (i) the area fraction of rods in the matrix, (ii) the average rod diameter, (iii) an average circularity (roundness), and (iv) the number density (Nd;rods/cm2). To acquire electron images of these materials, a digital image processing system (Tracor Northern 5500/5600) attached to a JEOL JXA-840 analytical SEM has been used.


1983 ◽  
Vol 54 (4) ◽  
pp. 1849-1854 ◽  
Author(s):  
J. E. E. Baglin ◽  
F. M. d’Heurle ◽  
C. S. Petersson

2012 ◽  
Vol 101 (5) ◽  
pp. 052110 ◽  
Author(s):  
L. Lin ◽  
Y. Guo ◽  
J. Robertson

2009 ◽  
Vol 154 ◽  
pp. 95-100 ◽  
Author(s):  
Seiichi Miyazaki ◽  
Mitsuhisa Ikeda ◽  
Katsunori Makihara ◽  
K. Shimanoe ◽  
R. Matsumoto

We demonstrated a new fabrication method of Pt- and Ni-silicide nanodots with an areal density of the order of ~1011 cm-2 on SiO2 through the process steps of ultrathin metal film deposition on pre-grown Si-QDs and subsequent remote H2 plasma treatments at room temperature. Verification of electrical separation among silicide nanodots was made by measuring surface potential changes due to electron injection and extraction using an AFM/Kelvin probe technique. Photoemission measurements confirm a deeper potential well of silicide nanodots than Si-QDs and a resultant superior charge retention was also verified by surface potential measurements after charging to and discharging. Also, the advantage in many electron storage per silicide nanodot was demonstrated in C-V characteristics of MIS capacitors with silicide nanodots FGs.


1978 ◽  
Vol 149 (1-3) ◽  
pp. 417-420 ◽  
Author(s):  
Hiroshi Ishiwara ◽  
Masao Nagatomo ◽  
Seijiro Furukawa

2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.


JOM ◽  
1999 ◽  
Vol 51 (4) ◽  
pp. 32-36 ◽  
Author(s):  
B. P. Bewlay ◽  
M. R. Jackson ◽  
P. R. Subramanian

2012 ◽  
Vol 100 (6) ◽  
pp. 061109 ◽  
Author(s):  
Shiyang Zhu ◽  
H. S. Chu ◽  
G. Q. Lo ◽  
P. Bai ◽  
D. L. Kwong

1996 ◽  
Vol 427 ◽  
Author(s):  
Geoffrey K. Reeves ◽  
H. Barry Harrison ◽  
Patrick W. Leech

AbstractThe continual trend in decreasing the dimensions of semiconductor devices results in a number of technological problems. One of the more significant of these is the increase in contact resistance, Rc. In order to understand and counteract this increase, Rc needs to be quantitatively modelled as a function of the geometrical and material properties of the contact. However the use of multiple semiconductor layers for ohmic contacts makes the modelling and calculation of Rc a more difficult problem. In this paper, a Tri-Layer Transmission Line Model (TLTLM) is used to analyse a MOSFET ohmic contact and gatedrain region. A quantitative assessment of the influence on Rc of important contact parameters such as the metal-silicide specific contact resistance, the silicide-silicon specific contact resistance and the gate-drain length can thus be made. The paper further describes some of the problems that may be encountered in defining Rc when the dimensions of certain types of contact found in planar devices decrease.


Sign in / Sign up

Export Citation Format

Share Document