Microstructure and wear resistance of Cuss-toughened Cr5Si3/CrSi metal silicide alloys

2005 ◽  
Vol 20 (5) ◽  
pp. 1122-1130 ◽  
Author(s):  
Y.X. Yin ◽  
H.M. Wang

Wear-resistant Cu-based solid-solution-toughened Cr5Si3/CrSi metal silicide alloy with a microstructure consisting of predominantly the dual-phase primary dendrites with a Cr5Si3 core encapsulated by CrSi phase and a small amount of interdendritic Cu-based solid solution (Cuss) was designed and fabricated by the laser melting process using Cr–Si–Cu elemental powder blends as the precursor materials. The microstructure of the Cuss-toughened Cr5Si3/CrSi metal silicide alloy was characterized by optical microscopy, powder x-ray diffraction, and energy dispersive spectroscopy. The Cuss-toughened silicide alloys have excellent wear resistance and low coefficient of friction under room temperature dry sliding wear test conditions with hardened 0.45% C carbon steel as the sliding–mating counterpart.

2011 ◽  
Vol 704-705 ◽  
pp. 1068-1072
Author(s):  
Yong Liang Gui ◽  
Xue Jing Qi ◽  
Chun Yan Song

A noval wear resistant Moss-toughened Mo2Ni3Si metal silicide alloys was designed and manufactured with the commercial Mo, Ni and Si powders. Wear resistance of the alloys was evaluated under dry-sliding wear test condition at room temperature. Results show that the alloys have excellent wear resistance and tribological compatibility coupling with conventional metallic materials due to the high hardness and strong atomic bonds of the ternary metal silicide Mo2Ni3Si with MgZn2 type Laves crystal structure.


2011 ◽  
Vol 284-286 ◽  
pp. 65-68
Author(s):  
Chun Yan Song ◽  
Yong Liang Gui ◽  
Bin Sheng Hu ◽  
Xue Jing Qi

Wear resistant NiMo/Mo2Ni3Si intermetallic composite with a microstructure of ternary metal silicide Mo2Ni3Si primary dendritic, the long strip-like NiMo intermetallic phase, and a small amount of Ni/NiMo eutectics structure were designed and fabricated. Wear resistance of NiMo/Mo2Ni3Si composites were evaluated under different load at room-temperature dry-sliding wear test conditions. Results indicate that NiMo/Mo2Ni3Si composites have excellent wear resistance and sluggish wear-load dependence. The dominant wear mechanisms of NiMo/Mo2Ni3Si composites are soft abrasion and slightly superficial oxidative wear.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 747
Author(s):  
Kaiwei Liu ◽  
Hua Yan ◽  
Peilei Zhang ◽  
Jian Zhao ◽  
Zhishui Yu ◽  
...  

TiN and WS2 + hBN reinforced Ni-based alloy self-lubricating composite coatings were fabricated on TC4 alloy by laser cladding using TiN, NiCrBSi, WS2, and hBN powder mixtures. Energy-dispersive spectroscopy (EDS), scanning electron microscopy (SEM), X-ray diffractometry (XRD), and optical microscopy (OM) were adopted to investigate the microstructure. The wear behaviors of the self-lubricating composite coatings were evaluated under large contact load in room temperature, dry-sliding wear-test conditions. Results indicated that the phases of the coatings mainly include γ-Ni, TiN, TiNi, TiW, WS2, and TiS mixtures. The average microhardness of the composite coating is 2.3–2.7 times that of the TC4 matrix. Laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coatings revealed a higher wear resistance and lower friction coefficient than those of the TC4 alloy substrate. The friction coefficient (COF) of the coatings was oscillating around approximately 0.3458 due to the addition of self-lubricant WS2 + hBN and hard reinforcement TiN. The wear behaviors testing showed that the wear resistance of the as-received TC4 was significantly improved by a laser cladding TiN/WS2 + hBN/NiCrBSi self-lubricating composite coating.


2012 ◽  
Vol 472-475 ◽  
pp. 2779-2782 ◽  
Author(s):  
Jing Wang ◽  
Si Jing Fu ◽  
Bing Hua Jiang ◽  
Yi San Wang

(Ti,W)C particles reinforced Fe-based surface composite coatings were fabricated by in-situ synthesis and powder metallurgy route. The microstructure, interface and wear properties were investigated by X-ray diffraction, scanning electron microscopy and dry sliding wear test. The results show that (Ti,W)C carbides form via in situ reaction between titanium, ferrotungsten and graphite. The morphology of (Ti,W)C is mainly rectangular form. The interface between (Ti,W)C and iron matrix is found to be free from cracks and deleterious phases. The coating reinforced by (Ti,W)C particles possesses higher wear resistance than that of the substrate.


Author(s):  
Deepak Mehra ◽  
M.M. Mahapatra ◽  
S. P. Harsha

The purpose of this article is to enhance the mechanical properties and wear resistance of the RZ5 alloy used in the aerospace application by adding TiC particles. The present study discusses processing of in-situ RZ5-TiC composite fabricated by self-propagating high temperature (S.H.S.) method and its wear behavior. The effects of TiC particle on mechanical and microstructural properties of the composite are studied. The wear test is performed by varying the sliding distance and applied load. The composite is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). The results exhibited the properties like strength and hardness of RZ5-10wt%TiC composite has been increased considerably, while grain size is decreased as compared to the RZ5 alloy. The fractography indicated mixed mode (quasi-cleavage and ductile feature) failure of the composites. The wear results showed improvement in wear resistance of the composite. The FESEM showed dominate wear mechanisms are abrasion, ploughing grooves.


2010 ◽  
Vol 663-665 ◽  
pp. 1256-1259
Author(s):  
Gui Mei Shi ◽  
Ge Song ◽  
Shu Lian ◽  
Jin Bing Zhang

A new type of antiferromagnetic CoAl2O4 coated ferromagnetic Co solid solution is synthesized by arc-discharging. Typical HRTEM images show that the nanocapsules form in a core-shell structure. The size of the nanocapsules is in range of 10-90 nm and the thickness of the shell is about 3-10 nm. X-ray photoelectron spectrum (XPS) and X-ray diffraction (XRD) reveal that the core consists of Co solid solution, while the shell is CoAl2O4. The magnetic field and temperature dependence of magnetizations confirm that the Co solid solution nanocapsules are basically in the ferromagnetic state below Curie temperature. In addition, the antiferromagnetic order occurs with Neél temperature TN of about 5 K. The saturation magnetization of Ms = 76.1 Am2/kg and the coercive force of Hc= 23.28 kA/m are achieved at room temperature for the Co solid solution nanocapsules.


2014 ◽  
Vol 802 ◽  
pp. 349-352
Author(s):  
A.B.C. Arnt ◽  
M.R. da Rocha ◽  
G.F. Marangoni

In this study it was evaluated the performance of coatings based on Cr3C2-25 (80Ni-20Cr) and CrC-30NiCr. The coatings were deposited by high velocity oxygen fuel (HVOF), with an average thickness of layer equal to 7.8μm. Samples were subjected to adhesive wear test (according ASTM G99) with a pin Ø 6 mm (SAE 52100). In the test was applied normal force equal to 50 N and tangential speed equal to 0.5 m/s. The test time was 30 minutes at room temperature, without lubrification. The wear surfaces were characterized by optical microscopy, scanning electron microscopy and X-ray diffraction. The microhardness of the coatings was also evaluated. The results showed that the coating based on Cr3C2-25(80Ni-20Cr) presented a performance ten times higher in wear resistance when compared to coating CrC-30NiCr.


2010 ◽  
Vol 97-101 ◽  
pp. 1377-1380 ◽  
Author(s):  
Jun Hai Liu ◽  
Ji Hua Huang ◽  
Jun Bo Liu ◽  
Gui Xiang Song

A new type in situ reinforcing phase TiC+Cr7C3 ceramal composite coating was fabricated on substrate of Q235 steel by plasma transferred arc (PTA) weld-surfacing process using the mixture of ferrotitanium, ferrochromium, ferroboron and ferrosilicium powders. Microstructure and wear performance of the coating were investigated by means of X-ray diffraction (XRD), scanning electron micrograph (SEM), energy dispersive X-ray analysis (EDS), microhardness tester and wear tester. Results show that the composite coating consists of TiC, primary phase Cr7C3 , (Cr,Fe)7C3 and austenite. The composite coating is metallurgically bonded to the Q235 steel substrate. TiC particles present cubic and “dendrite flower-like” shape in the composite coating. The coating has high microhardness and excellent wear resistance under dry-sliding wear test conditions.


2009 ◽  
Vol 152-153 ◽  
pp. 79-84 ◽  
Author(s):  
Joan Josep Suñol ◽  
L. Escoda ◽  
C. García ◽  
V.M. Prida ◽  
Victor Vega ◽  
...  

Glass-coated Cu-Mn-Ga microwires were fabricated by Taylor-Ulitovsky technique. By means of energy dispersive spectroscopy microanalysis, an average alloy composition of Cu56Ga28Mn16 was determined. The temperature dependence of magnetization measured at a low magnetic field showed the coexistence of two ferromagnetic phases. The Curie temperature of one phase is 125 K and above room temperature for the other one. X-ray diffraction at room temperature and at 100 K reflects the presence of the same three crystalline phases corresponding to the cubic B2 Cu-Mn-Ga structure as a main phase and the minor phases of fcc Cu rich solid solution with Mn and Ga and the monoclinic CuO.


Author(s):  
Akshay Shinde

Abstract: To improve the wear resistance of the hybrid powder coating, TiO2 nanoparticles was hot mixed to form a homogenous mixture with the powder in the range varying wt. dry sliding wear test conducted to determine the wear resistance. The experiments were design according to Taguchi L9 array to find the optimum nanoparticles content required to minimize the wear rate of the coating. ANOVA was used to determine the effect of the parameters on wear rate. It showed that reinforcement has the maximum contribution on the wear rate of the coating as compared to load and frequency. From the graph of means optimum parametric values was obtained at 2 % wt of reinforcement, 2 N load and 2 Hz frequency. The wear rate decrease with the increase in reinforcement. Keywords: Taguchi Method, Tribometer, Hybrid powder, TiO2, Wear Rate.


Sign in / Sign up

Export Citation Format

Share Document