scholarly journals The Correlation Between the Electronegativities and the Standard Potentials

Author(s):  
Alexandr I Chernomorskii

Abstract Linear correlations are analyzed between the empirical electronegativities χa of metals and non-metals and their standard potentials Eo. The correlation intersection corresponds to the transfer from metals to non-metals, characterized by the intermediate electronegativity χa,interm and the standard potential Eo ~+ 0.5 V SHE which is close to Billiter potential +0.475 V SHE. It is concluded that χa,interm and Eo ~ +0.5 V SHE would define some hypothetical substance (neither metal nor non-metal) without its own chemical activity. This would be due to the intermediate non-specific (definite coulomb) bond of its outer electrons being insufficiently unstable (as metallic bonds) for breaking and insufficiently stable (as non-metallic bonds) for accepting electrons in half-reactions. Spontaneous half-reactions are analyzed as interactions of Red - and Ox - forms with water molecules on electrodes due to break Red + H2O → Ox + neinterm and formation Ox + neinterm + H2O → Red of specific (chemical) electron bonds, where neinterm are electrons in the absence of a specific bond with Ox-forms but at the definite coulomb bond with them. The instant division of electrons, ions, polarization water molecules of formed intermediate complexes leads to the appearance of double-electric layers on electrodes.

2004 ◽  
Vol 67 (1) ◽  
pp. 87-103 ◽  
Author(s):  
Paolo Tremolada ◽  
Antonio Finizio ◽  
Sara Villa ◽  
Carlo Gaggi ◽  
Marco Vighi

1995 ◽  
Vol 414 ◽  
Author(s):  
J.Q. Sun ◽  
I. Bello ◽  
W.M. Lau ◽  
R.H. Lipson ◽  
Z.D. Lin

AbstractPolymer surfaces terminated with a specific chemical functionality are attractive for biomaterial applications because of the predictability and selectivity of surface reactions towards the anchoring of a biochemical agent to the polymer. In the present work, engineering of surface functionality was performed using OH radicals generated in gas phase by the reaction between a hot filament and water molecules in vacuum. The generation of OH was confirmed by laser induced fluorescence spectroscopy. The incorporation of oxygen and formation of alcohol groups on polystyrene were confirmed by x-ray photoelectron spectroscopy. High resolution electron energy loss spectroscopic data also showed that for polystyrene with an uptake of less than a monolayer equivalent of oxygen, C-OH was the only detectable surface functionality containing oxygen.


2020 ◽  
pp. 124-135
Author(s):  
I. N. G. Wardana ◽  
N. Willy Satrio

Tofu is main food in Indonesia and its waste generally pollutes the waters. This study aims to change the waste into energy by utilizing the electric charge in the pores of tofu waste to produce hydrogen in water. The tofu pore is negatively charged and the surface surrounding the pore has a positive charge. The positive and negative electric charges stretch water molecules that have a partial charge. With the addition of a 12V electrical energy during electrolysis, water breaks down into hydrogen. The test was conducted on pre-treated tofu waste suspension using oxalic acid. The hydrogen concentration was measured by a MQ-8 hydrogen sensor. The result shows that the addition of turmeric together with sodium bicarbonate to tofu waste in water, hydrogen production increased more than four times. This is due to the fact that magnetic field generated by delocalized electron in aromatic ring in turmeric energizes all electrons in the pores of tofu waste, in the sodium bicarbonate, and in water that boosts hydrogen production. At the same time the stronger partial charge in natrium bicarbonate shields the hydrogen proton from strong attraction of tofu pores. These two combined effect are very powerful for larger hydrogen production in water by tofu waste.


2017 ◽  
Vol 5 (4) ◽  
pp. 26-32 ◽  
Author(s):  
Azaria Robiana ◽  
M. Yashin Nahar ◽  
Hamidah Harahap

Glycerin residue is waste oleochemical industry that still contain glycerin. To produce quality and maximum quantity of glycerin, then research the effect of pH acidification using phosphoric acid. Glycerin analysis includes the analysis of pH, Fatty Acid and Ester (FAE), and analysis of the levels of glycerin. The maximum yield obtained at pH acidification 2 is grading 91,60% glycerin and Fatty Acid and Ester (FAE) 3,63 meq/100 g. Glycerin obtained is used as a plasticizer in the manufacture of bioplastics. Manufacture of bioplastics using the method of pouring a solution with varying concentrations of starch banana weevil (5% w/v and 7% w/v), variations of the addition of glycerin (1 ml, 3 ml, 5 ml and 7 ml), and a variety of gelatinization temperature (60°C, 70°C, and 80°C). Analysis of bioplastics include FTIR testing, tensile strength that is supported by SEM analysis. The results obtained in the analysis of FTIR does not form a new cluster on bioplastics starch banana weevil, but only a shift in the recharge area only, it is due to the addition of O-H groups originating from water molecules that enter the polysaccharide through a mechanism gelatinitation that generates interaction hydrogen bonding strengthened. The maximum tensile strength of bioplastics produced at a concentration of starch 7% w/v, 1 ml glycerine and gelatinization temperature of 80°C is 3,430 MPa. While the tensile strength bioplastic decreased with increasing glycerin which can be shown from the results of SEM where there is a crack, indentations and lumps of starch insoluble.


2015 ◽  
Vol 60 (3) ◽  
pp. 263-267
Author(s):  
L.A. Bulavin ◽  
◽  
S.V. Khrapatyi ◽  
V.M. Makhlaichuk ◽  

2015 ◽  
Vol 60 (8) ◽  
pp. 757-763 ◽  
Author(s):  
V.P. Voloshin ◽  
◽  
G.G. Malenkov ◽  
Yu.I. Naberukhin ◽  
◽  
...  

2003 ◽  
Vol 773 ◽  
Author(s):  
Mo Yang ◽  
Shalini Prasad ◽  
Xuan Zhang ◽  
Mihrimah Ozkan ◽  
Cengiz S. Ozkan

AbstractExtracellular potential is an important parameter which indicates the electrical activity of live cells. Membrane excitability in osteoblasts plays a key role in modulating the electrical activity in the presence of chemical agents. The complexity of cell signal makes interpretation of the cellular response to a chemical agent very difficult. By analyzing shifts in the signal power spectrum, it is possible to determine a frequency spectrum also known as Signature Pattern Vectors (SPV) specific to a chemical. It is also essential to characterize single cell sensitivity and response time for specific chemical agents for developing detect-to-warn biosensors. We used a 4x4 multiple Pt microelectrode array to spatially position single osteoblast cells, by using a gradient AC field. Fast Fourier Transformation (FFT) and Wavelet Transformation (WT) analyses were used to extract information pertaining to the frequency of firing from the extracellular potential.


Sign in / Sign up

Export Citation Format

Share Document