scholarly journals Electrochemical Preparation of Fe0.5CoNiCuSnx Medium Entropy Alloys and Their Corrosion Properties

Author(s):  
Jian Huang ◽  
Peilin Wang ◽  
Kaifa Du ◽  
Huayi Yin ◽  
Dihua Wang

Abstract The exploration of efficient preparation methods and corrosion-resistant medium entropy alloys (MEAs) has attracted significant attentions in recent years. In this paper, powdery Fe0.5CoNiCuSnx (x=0, 0.05, 0.08, and 0.1) MEAs were prepared by the one-step electrochemical reduction of metal oxides in molten Na2CO3-K2CO3 using a Ni11Fe10Cu oxygen-evolution inert anode. The effects of Sn on the structures, morphologies, and corrosion behaviors of the prepared MEAs were systematically investigated. The electrolytic MEAs exhibited a single face-centered cubic phase at x≤0.05, and the CuSn-rich phase would be segregated in the alloys at 0.08≤x≤0.1. Moreover, increasing Sn reduced the particles size of MEAs, and Sn improved the corrosion resistance of MEAs in 0.5 M H2SO4, 1 M KOH, and 3.5% NaCl solutions. The electrolytic MEA(Sn0.05) exhibited the best corrosion resistance, which had the corrosion current densities of 3.7×10-5 A/cm2 (0.5 M H2SO4), 1.2×10-5 A/cm2 (1 M KOH), and 1.6×10-5 A/cm2 (3.5 wt% NaCl) at room temperature. Overall, this paper not only provides a green approach to preparing Sn-containing MEAs, but also offers an efficient way to control structures and morphologies, thereby improving the corrosion resistance.

2012 ◽  
Vol 19 (03) ◽  
pp. 1250025 ◽  
Author(s):  
JOTHI SUDAGAR ◽  
RUAN DEWEN ◽  
YAQIN LIANG ◽  
RASU ELANSEZHIAN ◽  
JIANSHE LIAN

Influence of surfactants on the corrosion properties of chromium-free electroless nickel deposit were investigated on AZ91D magnesium alloy. The corrosion tests were carried out by immersion test (1 M HCl) and electrochemical polarization test (3.5 wt% NaCl ). The surfactants in the electroless nickel bath increases the corrosion resistance properties of the deposit on the magnesium alloy. In addition, smoothness and amorphous plus nano-crystalline phase were increased and accounted for the significant corrosion resistance. As a consequence, the corrosion potential moved towards the positive direction and the corrosion current density decreased. The immersion tests also provided the same trend as that of electrochemical polarization test. On the whole, the study concluded that corrosion resistance was enhanced by including a surfactant in the electroless deposits on magnesium alloy.


2012 ◽  
Vol 560-561 ◽  
pp. 837-841
Author(s):  
Pu Hong Tang ◽  
Jie Mao ◽  
Chong You Feng

TiN/AlN nanoscale multilayer films were deposited by pulsed laser ablation on silicon, with different argon and nitrogen gas flow rates. The total thickness of the TiN/AlN multilayer film was approximately 1μm. The friction and corrosion properties were studied by tribological and corrosive tests. In tribological tests, ball-on-disc was used to determine coefficients of friction and wear rates. The coefficient of friction against a Si3N4 ball varied considerably between films, as does the wear rate. The lowest coefficient of friction μ=0.97 was shown at sample 1, whereas the other three multilayer films were ranged from 1.0 to 1.5. In corrosion test, the anodic polarization characteristics were measured in a 3.5% NaCl solution at room temperature to examine the corrosion resistance. The potentiodynamic polarization measurements showed that for all the multilayer films the corrosion potential shift to higher values, and the corrosion current density decreased with increasing of nitrogen gas flow rate, which indicate a higher nitrogen partial pressures lead to a better corrosion resistance.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 754
Author(s):  
Mariya B. Sedelnikova ◽  
Anna V. Ugodchikova ◽  
Tatiana V. Tolkacheva ◽  
Valentina V. Chebodaeva ◽  
Ivan A. Cluklhov ◽  
...  

Biodegradable materials are currently attracting the attention of scientists as materials for implants in reconstructive medicine. At the same time, ceramics based on calcium silicates are promising materials for bone recovery, because Ca2+ and Si2+ ions are necessary for the mineralization process, and they take an active part in the formation of apatite. In the presented research, the protective silicate biocoatings on a Mg0.8Ca alloy were formed by means of the micro-arc oxidation method, and the study of their morphology, structure, phase composition, corrosion, and biological properties was carried out. Elongated crystals and pores were uniformly distributed over the surface of the coatings. The coated samples exhibited remarkable anti-corrosion properties in comparison with bare magnesium alloy because their corrosion current decreased 10 times, and their corrosion resistance increased almost 100 times. The coatings did not significantly affect the viability of the cells, even without the additional dilution of the extract, and were non-toxic according to ISO 10993-5: 2009. In this case, there was a significant difference in toxicity of the pure Mg0.8Ca alloy and the coated samples. Thus, the results demonstrated that the applied coatings significantly reduced the toxicity of the alloy.


2019 ◽  
Vol 823 ◽  
pp. 81-90 ◽  
Author(s):  
Yen Liang Su ◽  
Wen Hsien Kao ◽  
Yu Chien Chang

CN-Nb, CN-Ti and CN-Zr that are respectively doped with Nb, Ti and Zr metal in a CN coating are deposited on SKH51 substrate using DC unbalanced magnetron sputtering (DC-UBM). The coatings’ chemical characterization, morphology, mechanical, tribological and corrosion properties are determined. The XRD analysis shows when a low content of metal is added, the coatings exhibit DLC structures. Result from the incorporation of metals, coatings performed denser texture. Simultaneously, the surface became smoother and denser while surface roughness varied from 0.036 to about 0.020 mm. Various properties are improved over CN coating, CN-Ti has a 64% greater hardness at 21.9 Gpa and adhesion 26% better, with a critical load of 87 N. The elastic recovery ranges from 68% (CN) to 100% (CN-Nb and CN-Zr), the wear rate varies from 0.51 10-6mm3/Nm (CN) to 0.1 10-6mm3/Nm (CN-Zr) and the wear depth is reduced by about 73%. An increase in the elastic recovery gives a decreased wear rate. In addition, the corrosion resistance is increased because there is a decrease in the corrosion current density and the CN-Zr coating performed about 35 times better than a CN coating.


2014 ◽  
Vol 941-944 ◽  
pp. 1585-1588
Author(s):  
Zu Xiao Yu ◽  
De Tao Zheng ◽  
Hong Guo ◽  
Yong Liu ◽  
Yuan Liang Luo ◽  
...  

To improve the wear resistance and anti-corrosion properties of the aluminum, the electroless plating Ni-W-Mo-P alloy on the aluminum is necessary. The influences of heat treatment and additives (stabilizers) on the porosity, deposition rate, corrosion current, corrosion potential, microhardness and wear resistance of electroless plating Ni-W-Mo-P alloy coating, were investigated using electrochemical methods, etc. The results show that the deposition rate and anti-corrosion properties of electroless plating Ni-W-Mo-P are improved when the stabilizers, including KI (1mg/L) and “KIO3 (1mg/L) + Pb (Ac)2 (1mg/L)”, are added into bath, respectively. In addition, the maximum hardness (902 HV) and good wear resistance of Ni-W-Mo-P coatings are obtained when heated at 400°C (1h). However, its corrosion resistance is worse. Its microhardness is also obviously improved after heated at 200°Cfor 6 h, and the microhardness reaches to 950 HV.


2015 ◽  
Vol 723 ◽  
pp. 860-863
Author(s):  
Zu Xiao Yu ◽  
Shi Xiong Hao ◽  
Lan Li ◽  
De Tao Zheng

To improve the anti-corrosion properties of the aluminum, the electroless plating Ni-W-P on the aluminum is necessary. Investigation was made on the influences of additives (stabilizers and surfactants) on the deposition rate, weight loss corrosion rate, porosity, corrosion current, corrosion potential, electrochemical impedance spectroscopy (EIS) and webster hardness of electroless plating Ni-W-P alloy coating by electrochemical methods, etc. The results show that the deposition rate and anti-corrosion properties of electroless plating Ni-W-P are obviously improved when the stabilizer KIO3 (1mg/L) is added into plating solution. In addition, the Ni-W-P coating become more dense, uniform and defect-free with the addition of stabilizer KIO3 by comparison with no stabilizer. When the surfactant SDBS (50mg/L) added into bath, the corrosion resistance properties of electroless plating Ni-W-P alloy coating are also obtained.


2013 ◽  
Vol 456 ◽  
pp. 438-441 ◽  
Author(s):  
Tian Yang ◽  
Cheng Zhang Peng ◽  
Lang Xiang ◽  
Huo Cao

The electroplated Ni-Co-Cr coatings were prepared on surface of a low carbon steel. The microstructure of the deposits were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD), the corrosion resistance of the deposits was evaluated using neutral salt-spray test and polarization measurement. The results show that the deposits are a Co and Cr solid solution in Ni with a grain size of 6.9~10.6nm, were nearly free of corrosion after neutral salt-spray tested 100 hours. With chromium content increasing, the coatings exhibited higher corrosion potential and lower corrosion current, which revealed excellent corrosion resistance.


2017 ◽  
Vol 62 (4) ◽  
pp. 2101-2106
Author(s):  
M. Kciuk ◽  
S. Lasok

AbstractThe paper presents the influence of heat treatment on the structure and corrosion resistance of X5CrNi18-10 steel. To determine the structure which has been obtained after heat treatment the methods of light and scanning electron microscopy with EDS microanalysis were used. The electrochemical corrosion properties of the investigated steel were studied in 3.5% NaCl solution using potentiodynamic polarization tests. Basing on the registered curves, the corrosion current, polarization resistance and corrosion potential were determined. The corrosion tests were followed by fractographic researches.


2015 ◽  
Vol 778 ◽  
pp. 164-167 ◽  
Author(s):  
Zhi Qiang Ren ◽  
Xiao Ming Wang ◽  
Qi Wei Wang ◽  
Chao Ji Zhou ◽  
Yao Zhang

In this study, the anti-corrosion properties of nickel-based coatings on the surface of copper alloy were investigated, and damages caused by corrosion on the copper surface were resolved. Researchers prepared nickel-based coatings by supersonic particles deposition, and tested the anti-corrosion properties of brass substrate and nickel-based coating by electrochemical technology and neutral salt spray. The results show that, the corrosion current of coating decreased 35 times than that of matrix. The successive and pyknotic oxide film on the surface of coating prevented reaction of corrosion further. When it reached 500 hours, the corrosion rate closed to 0. Nickel-based coatings prepared by supersonic particles deposition contribute to the increase of corrosion resistance significantly, which verifies that it is feasible to prepare outstanding corrosion resisting nickel-based coating by supersonic particles deposition.


Sign in / Sign up

Export Citation Format

Share Document